• 제목/요약/키워드: zero-error

검색결과 754건 처리시간 0.024초

초기과도 상태를 개선한 자기 동조 제어 방식 (Self-tuning control with improved transient state)

  • 김운성;배한경;허경무
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.376-381
    • /
    • 1992
  • In this thesis, a self-tuning control method based on Variable Structure System technique for tracking control of Direct-Drive motor is presented. The self-tuning control could not make the tracking error zero in the transient period. This tracking error may be due to disturbances or the error in parameter identification. To overcome this problem, a self-tuning control method based on discrete time VSS technique is presented. The STC based on VSS technique gives good tracking performance of the reference signal in the transient period. The proposed controller is robust to parameter errors and disturbances. The performance of the proposed controller is compared with that of simple STC through digital computer simulation.

  • PDF

고정자 전류오차를 이용한 유도전동기 회전자 시정수보상 (Compensation of the Rotor Time Constant of Induction Motor using Stator Current Error)

  • 이무영;김승민;윤경섭;구본호;권우현
    • 제어로봇시스템학회논문지
    • /
    • 제4권5호
    • /
    • pp.585-591
    • /
    • 1998
  • It is proposed a new compensation method in the rotor time constant of indirect vector controlled induction motor. The proposed scheme is an on-line method using the stator current error that is the difference between current command and estimated current calculated from terminal voltages and currents. As the current error becomes to zero, the rotor time constant in the vector controller approaches the real value. The proposed method shows good performances in the transient region as well as in the steady state region regardless of load torque variation, and it is verified by the computer simulation using SIMULINK in Matlab.

  • PDF

전영역에서 안정된 유도전동기의 센서리스 속도제어 (A Stable Sensorless Speed Control for Induction Motor in the Overall Range)

  • 김종수;김성환;오세진
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권4호
    • /
    • pp.641-647
    • /
    • 2004
  • By most sensorless speed control schemes for induction motor. the control performances in high speed range are good, but it is difficult to obtain satisfactory results in low speed region. This paper proposes a new method controlling the low and the high speed regions separately to attain the stable operation in the overall range. The current error compensation method, in which the controlled stator voltage is applied to the induction motor so that the error between stator currents of the numerical model and the actual motor can be forced to decay to zero as time proceeds. is used in the low speed region In the high speed region. the method with adaptive observer is utilized. This control strategy contains an adaptive state observer for flux estimation. The rotor speed can be calculated from the rotor flux and the motor currents. The experimental results indicate good speed and load responses from the very low speed range to the high, and also show accurate speed changing performance between the low and the high speed range.

Error Compensation of Laser Interferometer for Measuring Displacement Using the Kalman Filter

  • Park, Tong-Jin;Lee, Yong-Woo;Wang, Young-Yong;Han, Chang-Soo;Lee, Nak-Ku;Lee, Hyung-Wok;Choi, Tae-Hoon;Na, Kyung-Whan
    • 반도체디스플레이기술학회지
    • /
    • 제3권2호
    • /
    • pp.41-46
    • /
    • 2004
  • This paper proposes a robust discrete time Kalman filter (RDKF) for the dynamic compensation of nonlinearity in a homodyne laser interferometer for high-precision displacement measurement and in real-time. The interferometer system is modeled to reduce the calculation of the estimator. A regulator is applied to improve the robustness of the system. An estimator based on dynamic modeling and a zero regulator of the system was designed by the authors of this study. For real measurement, the experimental results show that the proposed interferometer system can be applied to high precision displacement measurement in real-time.

  • PDF

Indentification and Compensation of Robot Kinematic Parameters for Positioning Accuracy Improvement

  • 김두형;국금환
    • 한국기계연구소 소보
    • /
    • 통권19호
    • /
    • pp.81-92
    • /
    • 1989
  • This paper presents a simple identification method of the actual kinematic parameters for the robot with parallel joints. It is known that Denavit-Hartenberg's coordinate system is not useful for nearly parallel joints. In this paper, the coordinate frames are reassigned to model the kinematic parameter between nearly parallel joints by four parameters. The proposed identification method uses a straight ruler about 1m long. A robot hand is placed by using a teaching pendant at the prescribed points on the ruler, and corresponding error function is defined. The identified kinematic parameters which make the error function zero are obtained by iterative least square error method based on the singular value decomposition. In the compensation of joint angles, only the position is considered because the usual applications of robot do not require a precise orientation control.

  • PDF

DC 모터 시스템을 위한 짧은 샘플링 시간을 갖는 이산슬라이딩 모드의 최종 수렴범위 (The Ultimate Bound of Discrete Sliding Mode Control System with Short Sampling Period for DC Motor System)

  • 박흠용;조영훈;박강박
    • 제어로봇시스템학회논문지
    • /
    • 제16권3호
    • /
    • pp.245-248
    • /
    • 2010
  • Almost all of control schemes proposed so far have been designed in the continuous-time domain theoretically. Actual systems, however, have been implemented in the discrete-time domain since Micro Control Unit(MCU) and/or microprocessors have been used for the controllers. Thus, the overall system turned to be a sampled-data system, and generally speaking, the ultimate error cannot converge to zero in the actual system even though the proposed control algorithm showed the asymptotic stability in the continuous-time domain. In this paper, therefore, the ultimate error bound of a sampled data system with a short sampling period has been investigated. The ultimate error is shown to be related in the sampling period.

계층적 최적화 기법을 이용한 강의 수질오염 제어 (River Pollution Control Using Hierarchical Optimization Technique)

  • 김경연;감상규
    • 한국환경과학회지
    • /
    • 제4권1호
    • /
    • pp.71-80
    • /
    • 1995
  • 생화학적 산소요구량(BOD) 및 용존 산소(DO)을 이용하여 여러구간이 있는 강에 대한 이산 상태공간모델은 설정하였다. 상호작용 예측방법을 이용하여, 상태변수에 시간지연이 존재하는 대규모 시스템에 적용가능한 계층적 최적화 방법을 기술하였다. 정상상태 오차를 해석적으로 구하고, 상수 목표티 추적문제에 있어서 정상상태 오차가 발생하지 않을 필요충분조겆을 규명하였다. 수질오염 모델에 대한 컴퓨터 모사를 통하여 기술한 알고리듬의 타당성을 확인하였다.

  • PDF

Accuracy Enhancement of Parameter Estimation and Sensorless Algorithms Based on Current Shaping

  • Kim, Jin-Woong;Ha, Jung-Ik
    • Journal of Power Electronics
    • /
    • 제16권1호
    • /
    • pp.1-8
    • /
    • 2016
  • Dead time is typically incorporated in voltage source inverter systems to prevent short circuit cases. However, dead time causes an error between the output voltage and reference voltage. Hence, voltage equation-based algorithms, such as motor parameter estimation and back electromotive force (EMF)-based sensorless algorithms, are prone to estimation errors. Several dead-time compensation methods have been developed to reduce output voltage errors. However, voltage errors are still common in zero current crossing areas, and an effect of the error is much worse in a low speed region. Therefore, employing voltage equation-based algorithms in low speed regions is difficult. This study analyzes the conventional dead-time compensation method and output voltage errors in low speed operation areas. A current shaping method that can reduce output voltage errors is also proposed. Experimental results prove that the proposed method reduces voltage errors and improves the accuracy of the parameter estimation method and the performance of the back EMF-based sensorless algorithm.

반복 학습을 통한 무인 선박의 제어기 설계에 관한 연구 (A Study on the Controller Design of Unmanned Surface Vessel through Repetitive Learning Method)

  • 김민철
    • 한국군사과학기술학회지
    • /
    • 제21권6호
    • /
    • pp.850-856
    • /
    • 2018
  • In this paper, a controller based on repetitive learning control is designed to control an unmanned surface vessel with nonlinear characteristics and unknown parameters. First, we define the equations of motion and error system of the unmanned vessel, and then design an repetitive learning controller composed of system error and estimated unknown parameters based on repetitive learning control and adaptive control. The stability of the unmanned vessel model controlled by the designed controller is verified through the analysis of the Lyapunov stability. Simulation shows that the error converges asymptotically to zero with semi-global result, confirming that the unmanned vessel is moving toward a given ideal path, and verifies that the controller is also feasible.

Altitude and Heading Correction of 3D Pedestrian Inertial Navigation

  • Cho, Seong Yun;Lee, Jae Hong;Park, Chan Gook
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제10권3호
    • /
    • pp.189-196
    • /
    • 2021
  • In this paper, we propose techniques to correct the altitude error and heading error of 3D Pedestrian Inertial Navigation (PIN). When a PIN is used to estimate the location of a pedestrian only with an Inetrial Measurement Unit (IMU) without infrastructure, there is a problem in that the location error gradually increases due to the limitation of the observability of the filter. To solve this problem without additional sensors, we propose two techniques in this paper. First, stair walking is recognized in consideration of the altitude difference that may occur during one step. If it is recognized as stair walking, only Zero-velocity UPdaTe (ZUPT) is performed, and if it is recognized as level walking, ZUPT + Altitude Damping (AD) is performed together to correct the altitude error. Second, the straight-line movement direction is calculated through the difference of the estimated position, and the heading error is corrected by matching this information with the link information of the digital map. By applying these techniques, it is verified through real tests that accurate three-dimensional location information of pedestrians can be estimated without infrastructure.