• Title/Summary/Keyword: zero-energy

Search Result 1,183, Processing Time 0.022 seconds

Techno-economic assessment of a very small modular reactor (vSMR): A case study for the LINE city in Saudi Arabia

  • Salah Ud-Din Khan;Rawaiz Khan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1244-1249
    • /
    • 2023
  • Recently, the Kingdom of Saudi Arabia (KSA) announced the development of first-of-a-kind(FOAK) and most advanced futuristic vertical city and named as 'The LINE'. The project will have zero carbon dioxide emissions and will be powered by clean energy sources. Therefore, a study was designed to understand which clean energy sources might be a better choice. Because of its nearly carbon-free footprint, nuclear energy may be a good choice. Nowadays, the development of very small modular reactors (vSMRs) is gaining attention due to many salient features such as cost efficiency and zero carbon emissions. These reactors are one step down to actual small modular reactors (SMRs) in terms of power and size. SMRs typically have a power range of 20 MWe to 300 MWe, while vSMRs have a power range of 1-20 MWe. Therefore, a study was conducted to discuss different vSMRs in terms of design, technology types, safety features, capabilities, potential, and economics. After conducting the comparative test and analysis, the fuel cycle modeling of optimal and suitable reactor was calculated. Furthermore, the levelized unit cost of electricity for each reactor was compared to determine the most suitable vSMR, which is then compared other generation SMRs to evaluate the cost variations per MWe in terms of size and operation. The main objective of the research was to identify the most cost effective and simple vSMR that can be easily installed and deployed.

A Study on the Optimum Design of a Facade with Shading-type BIPV in Office Building (차양형 BIPV가 적용된 사무소 건물의 외피 최적 설계에 관한 연구)

  • Park, Se-Hyeon;Kang, Jun-Gu;Bang, Ah-Young;Kim, Jun-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.2
    • /
    • pp.93-101
    • /
    • 2015
  • Zero energy building is a self sufficient building that minimizes energy consumption through passive elements such as insulation, high performance window system and installing of high efficiency HVAC system and uses renewable energy sources. The Korea Government has been strengthening the building energy efficiency standard and code for zero energy building. The building energy performance is determined by the performance of building envelope. Therefore it is important to optimize facade design such as insulation, window properties and shading, that affect the heating and cooling loads. In particular, shading devices are necessary to reduce the cooling load in summer season. Meanwhile, BIPV shading system functions as a renewable energy technology applied in solar control facade system to reduce cooling load and produce electricity simultaneously. Therefore, when installing the BIPV shading system, the length of shadings and angle that affect the electricity production must be considered. This study focused on the facade design applied with BIPV shading system for maximizing energy saving of the selected standard building. The impact of changing insulation on roof and walls, window properties and length of BIPV shading device on energy performance of the building were investigated. In conclusion, energy consumption and electricity production were analyzed based on building energy simulations using energyplus 8.1 building simulation program and jEPlus+EA optimization tool.

An Analysis on Effects of Passive Heating of Low Energy House Using Heat in Greenhouse (온실의 열을 이용한 저에너지하우스의 패시브 난방 효과 분석)

  • Yoo, Dong-Wan;Lee, Tae-Goo
    • KIEAE Journal
    • /
    • v.16 no.5
    • /
    • pp.103-109
    • /
    • 2016
  • Purpose: In Korea, to reduce greenhouse gas emissions, energy performance standard of buildings is being reinforced with goals of Passive House until 2017 and Zero Energy House until 2025 in order to reduce emissions from buildings which constitute a quarter of greenhouse gas emissions. In order to achieve the target of Zero Energy House, it is certainly necessary to develop renewable energy that can replace cooling and heating energy occupying a significant amount of building energy consumption after increasing the energy performance firstly. Method: In this study, effects of heat in greenhouse heated by solar heating on indoor heating were analyzed by constructing a greenhouse in front of the Low Energy Building. Result: As a result, indoor temperature was increased by peak average $27.8^{\circ}C$, peak average $6.8^{\circ}C$ was increased from when heat in greenhouse has not been used for heating and indoor surface temperature was increased by average $5.1^{\circ}C$. It shows it can be possible to use heat in greenhouse for heating, if the heating effects can be same as this experimental result because Energy Saving-Type buildings such as Low Energy House or Passive House keep from 18 to $20^{\circ}C$ in winter. Therefore, even if energy supply is cut off by disasters and other reasons, cooling and heating can be possible for some time.

Energy-aware EDZL Real-Time Scheduling on Multicore Platforms (멀티코어 플랫폼에서 에너지 효율적 EDZL 실시간 스케줄링)

  • Han, Sangchul
    • Journal of KIISE
    • /
    • v.43 no.3
    • /
    • pp.296-303
    • /
    • 2016
  • Mobile real-time systems with limited system resources and a limited power source need to fully utilize the system resources when the workload is heavy and reduce energy consumption when the workload is light. EDZL (Earliest Deadline until Zero Laxity), a multiprocessor real-time scheduling algorithm, can provide high system utilization, but little work has been done aimed at reducing its energy consumption. This paper tackles the problem of DVFS (Dynamic Voltage/Frequency Scaling) in EDZL scheduling. It proposes a technique to compute a uniform speed on full-chip DVFS platforms and individual speeds of tasks on per-core DVFS platforms. This technique, which is based on the EDZL schedulability test, is a simple but effective one for determining the speeds of tasks offline. We also show through simulation that the proposed technique is useful in reducing energy consumption.

A Comparison of Speech/Music Discrimination Features for Audio Indexing (오디오 인덱싱을 위한 음성/음악 분류 특징 비교)

  • 이경록;서봉수;김진영
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.10-15
    • /
    • 2001
  • In this paper, we describe the comparison between the combination of features using a speech and music discrimination, which is classifying between speech and music on audio signals. Audio signals are classified into 3classes (speech, music, speech and music) and 2classes (speech, music). Experiments carried out on three types of feature, Mel-cepstrum, energy, zero-crossings, and try to find a best combination between features to speech and music discrimination. We using a Gaussian Mixture Model (GMM) for discrimination algorithm and combine different features into a single vector prior to modeling the data with a GMM. In 3classes, the best result is achieved using Mel-cepstrum, energy and zero-crossings in a single feature vector (speech: 95.1%, music: 61.9%, speech & music: 55.5%). In 2classes, the best result is achieved using Mel-cepstrum, energy and Mel-cepstrum, energy, zero-crossings in a single feature vector (speech: 98.9%, music: 100%).

  • PDF

Characteristic Analysis of C-dump Converter Topology for SRM of Electric Multiple Unit Door Driving (전동차 출입문 구동을 위한 SRM용 C-dump 컨버터 Topology 특성 비교)

  • Yoon, Yong-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.9
    • /
    • pp.1597-1604
    • /
    • 2016
  • The speed at which the SRM (Switched Reluctance Motor) makes a transition from chopping control to single pulse operation. (i.e., low speed to high speed operation). It is unsatisfied with performance at all operational regimes. In this paper, the operational performance of SRM can be improved by using current hysteresis control method. This method maintains a generally flat current waveform. At the high speed, the current chopping capability is lost due to the development of the back-EMF. Therefore SRM operates in single pulse mode. By using zero-current switching and zero-voltage switching technique, the stress of power switches can be reduce in chopping mode. When the commutation from one phase winding to another phase winding, the current can be zero as fast as possible in this period because several times negative voltage of DC-source voltage produce in phase winding. This paper is compared to performance based on energy efficient C-dump converter topology and the proposed resonant C-dump converter topology. Simulation and experimental results are presented to verify the effectiveness of the proposed circuit.

Current Limit Strategy of Voltage Controller of Delta-Connected H-Bridge STATCOM under Unbalanced Voltage Drop

  • Son, Gum Tae;Park, Jung-Wook
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.550-558
    • /
    • 2018
  • This paper presents the current limit strategy of voltage controller of delta-connected H-bridge static synchronous compensator (STATCOM) under an unbalanced voltage fault event. When phase to ground fault happens, the feasibility to heighten the magnitude of sagging phase voltage is considered by using symmetric transformation method in delta-structure STATCOM. And the efficiency to cover the maximum physical current limit of switching device is considered by using vector analysis method that calculate the zero sequence current for balancing the cluster energy in delta connected H-bridge STATCOM. The result is simple and obvious. Only positive sequence current has to be used to support the unbalanced voltage sag. Although the relationship between combination of the negative sequence voltage with current and zero sequence current is nonlinear, the more negative sequence current is supplying, the larger zero sequence current is required. From the full-model STATCOM system simulation, zero sequence current demand is identified according to a ratio of positive and negative sequence compensating current. When only positive sequence current support voltage sag, the least zero sequence current is needed.