• Title/Summary/Keyword: zeolites

Search Result 262, Processing Time 0.032 seconds

Properties of Zeolite Nanopowder Coated with Titanium Dioxide by Atomic Layer Deposition

  • Lee, Bo Kyung;Ok, Hae Ryul;Bae, Hye Jin;Kim, Hyug Jong;Choi, Byung Ho
    • Korean Journal of Materials Research
    • /
    • v.26 no.3
    • /
    • pp.149-153
    • /
    • 2016
  • Nanosized zeolites were prepared in an autoclave using tetraethoxysilane (TEOS), tetrapropylammonium hydroxide (TPAOH), and $H_2O$, at various hydrothermal synthesis temperatures. Using transmission electron microscopy and particle size analysis, the nanopowder particulate sizes were revealed to be 10-300 nm. X-ray diffraction analysis confirmed that the synthesized nanopowder was silicalite-1 zeolite. Using atomic layer deposition, the fabricated zeolite nanopowder particles were coated with nanoscale $TiO_2$ films. The $TiO_2$ films were prepared at $300^{\circ}C$ by using $Ti[N(CH_3)_2]_4$ and $H_2O$ as precursor and reactant gas, respectively. In the TEM analysis, the growth rate was ${\sim}0.7{\AA}/cycle$. Zeta potential and sedimentation test results indicated that, owing to the electrostatic repulsion between $TiO_2$-coated layers on the surface of the zeolite nanoparticles, the dispersibility of the coated nanoparticles was higher than that of the uncoated nanoparticles. In addition, the effect of the coated nanoparticles on the photodecomposition was studied for the irradiation time of 240 min; the concentration of methylene blue was found to decrease to 48%.

Feasibility Study on Reactive Material in Permeable Reactive Barriers Against Contaminated Groundwater with Ammonium from Unsanitary Landfill (암모늄으로 오염된 비위생 매립지 주변지반의 지하수 정화를 위한 반응벽체내 물질 연구)

  • 이승학;박준범
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.1
    • /
    • pp.29-36
    • /
    • 2004
  • Batch and column tests were performed to develop the design factors for permeable reactive barriers(PRBs) against the contaminated groundwater with ammonium from unsanitary landfill. Clinoptilolite, one of natural zeolites having excellent cation exchange capacity(CEC), was chosen as the reactive material. In batch test, the reactivity of clinoptilolite to ammonium was examined by varying the initial concentration of ammonium and the particle size of clinoptilolites. One gram of clinoptilolite showed removal efficiency about 80% against the ammonium except in very high initial concentration of 80 ppm, but the effect of particle size of clinoptilolite was not noticeable. Permeability test was performed for the specimens made of clinoptilolite and Jumunjin sand with 20 : 80 weight ratio. Flexible wall permeameter was employed far permeability test. The specimen containing the washed 0.42-0.85mm clinoptilolite showed the highest permeability of about $10^{-3}$/s. In column test, the reactivity of mixed materials against ammonium in flowing condition was examined with the landfill leachate. With the test results, clinoptilolite was found to be a suitable material for PRBs against the contaminated groundwater with ammonium.

Preparation and Pore-Characteristics Control of Nano-Porous Materials using Organometallic Building Blocks

  • Oh, Gyu-Hwan;Park, Chong-Rae
    • Carbon letters
    • /
    • v.4 no.1
    • /
    • pp.1-9
    • /
    • 2003
  • Recently, the control of pore-characteristics of nano-porous materials has been studied extensively because of their unique applications, which includes size-selective separation, gas adsorption/storage, heterogeneous catalysis, etc. The most widely adopted techniques for controlling pore characteristics include the utilization of pillar effect by metal oxide and of templates such as zeolites. More recently, coordination polymers constructed by transition metal ions and bridging organic ligands have afforded new types of nano-porous materials, porous metal-organic framework(porous MOF), with high degree and uniformity of porosity. The pore characteristics of these porous MOFs can be designed by controlling the coordination number and geometry of selected metal, e.g transition metal and rare-earth metal, and the size, rigidity, and coordination site of ligand. The synthesis of porous MOF by the assembly of metal ions with di-, tri-, and poly-topic N-bound organic linkers such as 4,4'-bipyridine(BPY) or multidentate linkers such as carboxylates, which allow for the formation of more rigid frameworks due to their ability to aggregate metal ions into M-O-C cluster, have been reported. Other porous MOF from co-ligand system or the ligand with both C-O and C-N type linkage can afford to control the shape and size of pores. Furthermore, for the rigidity and thermal stability of porous MOF, ring-type ligand such as porphyrin derivatives and ligands with ability of secondary bonding such as hydrogen and ionic bonding have been studied.

  • PDF

Characteristics of Leaves, Roots, and Fruit as Influenced by Energized-Functional Water Supply in Fuji Apple Trees (Energized 기능수 처리에 따른 후지사과의 잎, 뿌리 및 과실특성)

  • Kim, Wol Soo;Chung, Soon Ju
    • Horticultural Science & Technology
    • /
    • v.16 no.2
    • /
    • pp.233-235
    • /
    • 1998
  • Energized-functional water (EFW) and powder (EFP) were manufactured by Kyungwon Institute of Life Science, Seoul, through a series of processes; tap water ultra-purification energy imprinting with catalysts in platinum columns mixing energy-imprinted water + activated zeolites + photosynthetic bacteria fermenting at $25^{\circ}C$ filtering EFW and/or EFP. A single application of EFP to soil under tree canopy before bud burst, combined with three EFW applications to soil during growth of 'Fuji' apples (Malus domestica Borkh.) resulted in a higher Ca concentrations in fruit skins and flesh, and lower Ca and N concentrations in leaves and shoot-bark tissues. EFW also stimulated the net photosynthesis of leaves and root activity. Soluble solid concentrations (SSC) and anthocyanin levels of fruits were also significantly increased at harvest, producing greater firmness and less core browning during storage at $0^{\circ}C$. However, there was no significant difference in titratable acidity of fruit juice between the EFW treatment and the controls.

  • PDF

A Review on Zeolite-based Ceramic Membrane for Oil/Water Separation (기름/물 분리를 위한 제올라이트 기반의 세라믹 분리막에 대한 총설)

  • Lee, Joo Yeop;Rajkumar, Patel;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.32 no.2
    • /
    • pp.83-90
    • /
    • 2022
  • Wastewater from refineries and petroleum plant lead to severe environmental pollution. There are various existing processes applied for oily water treatment, but membrane-based technology is one of the most efficient methods. Polymeric membranes prepared from organic materials for the separation of oil in water often face chronic problem of membrane fouling. Inorganic membranes are considered to be more efficient due to longer lifetime than organic membranes. Zeolite membranes have better chemical stability and long-term recyclability. The presence of hydrophilicity enhances the water flux of membrane. Ceramic membranes prepared from zeolites are another efficient class of inorganic membranes applied for oil water separation. This review is focused on oily wastewater separation based on zeolite membrane which classified into two categories, i) neat zeolite and ii) zeolite composites with other materials.

Effects of mining activities on Nano-soil management using artificial intelligence models of ANN and ELM

  • Liu, Qi;Peng, Kang;Zeng, Jie;Marzouki, Riadh;Majdi, Ali;Jan, Amin;Salameh, Anas A.;Assilzadeh, Hamid
    • Advances in nano research
    • /
    • v.12 no.6
    • /
    • pp.549-566
    • /
    • 2022
  • Mining of ore minerals (sfalerite, cinnabar, and chalcopyrite) from the old mine has led in significant environmental effects as contamination of soils and plants and acidification of water. Also, nanoparticles (NP) have obtained global importance because of their widespread usage in daily life, unique properties, and rapid development in the field of nanotechnology. Regarding their usage in various fields, it is suggested that soil is the final environmental sink for NPs. Nanoparticles with excessive reactivity and deliverability may be carried out as amendments to enhance soil quality, mitigate soil contaminations, make certain secure land-software of the traditional change substances and enhance soil erosion control. Meanwhile, there's no record on the usage of Nano superior substances for mine soil reclamation. In this study, five soil specimens have been tested at 4 sites inside the region of mine (<100 m) to study zeolites, and iron sulfide nanoparticles. Also, through using Artificial Neural Network (ANN) and Extreme Learning Machine (ELM), this study has tried to appropriately estimate the mechanical properties of soil under the effect of these Nano particles. Considering the RMSE and R2 values, Zeolite Nano materials could enhance the mine soil fine through increasing the clay-silt fractions, increasing the water holding capacity, removing toxins and improving nutrient levels. Also, adding iron sulfide minerals to the soils would possibly exacerbate the soil acidity problems at a mining site.

Recent Advances on MOF-assisted Atmospheric Water Harvesting at Dry Regions (수분 수착 MOF를 이용한 건조한 지역의 대기 중 워터하베스팅 기술의 최근 동향)

  • Geunho Lee;Woochul Song
    • Membrane Journal
    • /
    • v.34 no.1
    • /
    • pp.30-37
    • /
    • 2024
  • As a promising method to address global water scarcity, sorbent-assisted water harvesting from air has shown great potential to deliver drinking water for inlands lacking traditional water sources. In this article, the recent studies of using metal-organic frameworks (MOFs) as sorbents to harvest atmospheric water will be introduced. Compared to the other sorbent materials such as zeolites or silica-based materials, MOFs have shown prospective properties such as the water isotherm inflection points as low as ~10%, which are suitable for harvesting water at dry regions. Due to this property, recently, MOFs have been extensively adopted to develop practical water harvesting devices that can harvest water. Since atmospheric water is accessible anywhere and anytime in the world, this technology is expected to open a new avenue in terms of securing safe water for the future.

Determination of Si/Al Ratio of Faujasite-type Zeolite by Single-crystal X-ray Diffraction Technique. Single-crystal Structures of Fully Tl+- and Partially K+-exchanged Zeolites Y (FAU), |Tl71|[Si121Al71O384]-FAU and |K53Na18|[Si121Al71O384]-FAU

  • Seo, Sung-Man;Lee, Oh-Seuk;Kim, Hu-Sik;Bae, Dong-Han;Chun, Ik-Jo;Lim, Woo-Taik
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.10
    • /
    • pp.1675-1682
    • /
    • 2007
  • Large colorless single crystals of faujasite-type zeolite with diameters up to 200 μm have been synthesized from gels with the composition of 3.58SiO2:2.08NaAlO2:7.59NaOH:455H2O:5.06TEA:1.23TCl. Two of these, colorless octahedron about 200 μm in cross-section have been treated with aqueous 0.1 M TlC2H3O2 and KNO3 in order to prepare Tl+- and K+-exchanged faujasite-type zeolites, respectively, and then determined the Si/Al ratio of the zeolite framework. The crystal structures of |Tl71|[Si121Al71O384]-FAU and |K53Na18|[Si121Al71O384]-FAU per unit cell, a = 24.9463(2) and 24.9211(16) A, respectively, dehydrated at 673 K and 1 × 10-6 Torr, have been determined by single-crystal X-ray diffraction techniques in the cubic space group Fd m at 294 K. The two single-crystal structures were refined using all intensities to the final error indices (using only the 905 and 429 reflections for which Fo > 4σ(Fo)) R1/R2 = 0.059/0.153 and 0.066/0.290, respectively. In the structure of fully Tl+-exchanged faujasite-type zeolite, 71 Tl+ ions per unit cell are located at four different crystallographic sites. Twenty-nine Tl+ ions fill site I' in the sodalite cavities on 3-fold axes opposite double 6-rings (Tl-O = 2.631(12) A and O-Tl-O = 93.8(4)o). Another 31 Tl+ ions fill site II opposite single 6-rings in the supercage (Tl-O = 2.782(12) A and O-Tl-O = 87.9(4)o). About 3 Tl+ ions are found at site III in the supercage (Tl-O = 2.91(6) and 3.44(3) A), and the remaining 8 occupy another site III (Tl-O = 2.49(5) and 3.06(3) A). In the structure of partially K+-exchanged faujasite-type zeolite, 53 K+ ions per unit cell are found at five different crystallographic sites and 18 Na+ ions per unit cell are found at two different crystallographic sites. The 4 K+ ions are located at site I, the center of the hexagonal prism (K-O = 2.796(8) A and O-K-O = 89.0(3)o). The 10 K+ ions are found at site I' in the sodalite cavity (K-O = 2.570(19) A and O-KO = 99.4(9)o). Twenty-two K+ ions are found at site II in the supercage (K-O = 2.711(9) A and O-K-O = 94.7(3)o). The 5 K+ ions are found at site III deep in the supercage (K-O = 2.90(5) and 3.36(3) A), and 12 K+ ions are found at another site III' (K-O = 2.55(3) and 2.968(18) A). Twelve Na+ ions also lie at site I' (Na-O = 2.292(10) and O-Na-O = 117.5(5)o). The 6 Na+ ions are found at site II in the supercage (Na-O = 2.390(17) A and O-Na-O = 113.1(11)o). The Si/Al ratio of synthetic faujasite-type zeolite is 1.70 determined by the occupations of cations, 71, in two single-crystal structures.

Applied-Mineralogical Characterization and Assessment of Some Domestic Bentonites (I): Mineral Composition and Characteristics, Cation Exchange Properties, and Their Relationships (국내산 벤토나이트에 대한 응용광물학적 특성 평가 (I): 광물 조성 및 특징과 양이온 교환특성과의 연계성)

  • 노진환
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.329-344
    • /
    • 2002
  • Mineralogical and chemical characterization of some domestic bentonites, such as quantitative XRD analysis, chemical leaching experiments, pH and CEC determinations, were done without any separation procedures to understand their relationships among mineral composition, characteristics, and cation exchange properties. XRD quantification results based on Rietveld method reveal that the bentonites contain totally more than 25 wt% of impurities, such as zeolites, opal-CT, and feldspars, in addition to montmorillonite ranging 30~75 wt%. Cation exchange properties of the zeolitic bentonites are deeply affected by the content of zeolites identified as clinoptilolite-heulandite series. Clinoptilolite is common in the silicic bentonites with lighter color. and occurs closely in association with opal-CT. Ca is mostly the dominant exchangeable cation, but some zeolitic bentonites have K as a major exchangeable cation, The values of cation exchange capacity (CEC) determined by Methylene Blue method are comparatively low and have roughly a linear relationship with the montmorillonite content of the bentonite, though the correlated data tend to be rather dispersed. Compared to this, the CEC determined by Ammonium Acetate method, i.e.‘Total CEC’, has much higher values (50~115 meq/100 g). The differences between those CEC values are much greater in zeolitic bentonites, which obviously indicates the CEC increase affected by zeolite. Other impurities such as opal-CT and feldspars seem to affect insignificantly on the CEC of bentonites. When dispersed in distilled water, the pH of bentonites roughly tends to increase up to 9.3 with increasing the alkali abundance, especially Na, in exchangeable cation composition. However, some bentonites exhibit lower pH (5~6) so as to regard as ‘acid clay’. This may be due to the presence of $H^{+}$ in part as an exchangeable cation in the layer site of montmorillonite. All the works of this study ultimately suggest that an assesment of domestic bentonites in grade and quality should be accomplished through the quantitative XRD analysis and the ‘Total CEC’measurement.

Treatment of Artificial Sewage Using a Zeolite Column (제올라이트 칼럼에 의한 인공생활하수처리)

  • Seo, Jeoung-Yoon
    • Korean Journal of Environmental Agriculture
    • /
    • v.21 no.3
    • /
    • pp.178-188
    • /
    • 2002
  • Constructed wetlands typically cost less to build and operate, and require less energy than standard mechanical treatment technology but they have similar performance to centralized wastewater treatment plants. Therefore, they were constructed especially many in rural areas, where are small villages but not industries. Plantless column tests were performed to investigate the possibility on using zeolite as a filter medium of constructed wetland for the wastewater treatment. Removal efficiency was $COD_{Cr}$ 94.63% T-P 41.41% and $NH_4^+-N$ 99.75% at hydraulic load 314 $L/m^2{\cdot}d$ and filtering height 100 cm filled with a zeolite mixture. This zeolite mixture consisted of 1 : 1 by volume of zeolites in the diameter range of 0.5 to 1 mm and 1 to 3 mm. Accordingly, hydraulic load 314 $L/m^2{\cdot}d$ was considered as optimal. Three zeolite mixtures were used to determine the optimal mixing ratio by volume of a zeolite (A) in the diameter range of 0.5 to 1 mm to a zeolite (B) in the diameter range of 1 to 3 mm 1 : 3, 1 : 1 and only B in A to B by volume were tested at hydraulic load 314 $L/m^2{\cdot}d$ and filtering height 100 cm $COD_{Cr}$ removal efficiency was more than 89% at mixing ratios of 1 : 3 and 1 : 1 in A to B. That of T-P ranged 56.42 to 58.72% and, that of T-N and $NH_4^+-N$ was 87% and 99% regardless of mixing ratios of two zeolites. Removal efficiency was lower at the column filled with only B. Removal efficiency was better at Inter medium filled with mixing ratio 1 : 1 in A to B than with the other mixing ratios. Thus, it was found that the mixture of mixing ratio 1 : 1 in A to B was appropriate far Inter medium of constructed wetland Removal efficiency was higher in down-flow than in up-flow, and all contaminants were removed most in 20 cm filter height near feeding area.