• 제목/요약/키워드: zebrafish

검색결과 259건 처리시간 0.028초

Zebrafish에서 human cytochrome b5의 발현 (Expression of Human Cytochrome b5 in Zebrafish)

  • 한세미;유민
    • 생명과학회지
    • /
    • 제27권6호
    • /
    • pp.617-622
    • /
    • 2017
  • 본 연구에서는 zebrafish에 사람의 cyt $b_5$ 유전자를 microinjection하여 발현시키고, 그 결과를 형광으로 확인하였다. HeLa cell에서 RT-PCR을 진행한 결과 414 bp의 cyt $b_5$ band가 증폭되었다. 염기서열 분석으로 재확인된 cyt $b_5$ insert를 pEGFP-N3의 형광 vector에 클로닝하였고, 이렇게 준비된 pEGFP-N3-cyt $b_5$ plasmid DNA를 1세 포기의 수정란에 microinjection하였다. cyt $b_5$를 microinjection한 치어를 형광현미경으로 관찰한 결과 대조군 치어보다 훨씬 선명한 형광을 띠는 것이 확인되었다. 최종적으로 치어에서 RNA를 분리하여 RT-PCR하였고 전기영동과 DNA sequencing으로 fusion 단백질의 발현을 재확인하였다. Cyt $b_5$의 발현으로 인해 zebrafish의 생존율이 다소 떨어지는 것으로 확인되었기에 독성 문제를 해결하기 위한 연구가 계속 필요할 것으로 사료된다. 이 연구는 향후 cyt $b_5$가 결핍되었을 경우 발생할 수 있는 여러 질병들을 유전자 차원에서 치료하고, 유용 유전자 클로닝을 위한 기술 개발에 발판이 될 수 있을 것으로 기대된다.

Panax ginseng (Korea Red Ginseng) repairs diabetic sensorineural damage through promotion of the nerve growth factor pathway in diabetic zebrafish

  • Nam, Youn Hee;Moon, Hyo Won;Lee, Yeong Ro;Kim, Eun Young;Rodriguez, Isabel;Jeong, Seo Yule;Castaneda, Rodrigo;Park, Ji-Ho;Choung, Se-Young;Hong, Bin Na;Kang, Tong Ho
    • Journal of Ginseng Research
    • /
    • 제43권2호
    • /
    • pp.272-281
    • /
    • 2019
  • Background: Diabetic sensorineural damage is a complication of the sensory neural system, resulting from long-term hyperglycemia. Red ginseng (RG) has shown efficacy for treatment of various diseases, including diabetes mellitus; however, there is little research about its benefit for treating sensorineural damage. Therefore, we aim to evaluate RG efficacy in alloxan-induced diabetic neuromast (AIDN) zebrafish. Methods: In this study, we developed and validated an AIDN zebrafish model. To assess RG effectiveness, we observed morphological changes in live neuromast zebrafish. Also, zebrafish has been observed to have an ultrastructure of hair-cell cilia under scanning electron microscopy. Thus, we recorded these physiological traits to assess hair cell function. Finally, we confirmed that RG promoted neuromast recovery via nerve growth factor signaling pathway markers. Results: First, we established an AIDN zebrafish model. Using this model, we showed via live neuromast imaging that RG fostered recovery of sensorineural damage. Damaged hair cell cilia were recovered in AIDN zebrafish. Furthermore, RG rescued damaged hair cell function through cell membrane ion balance. Conclusion: Our data suggest that RG potentially facilitates recovery in AIDN zebrafish, and its mechanism seems to be promotion of the nerve growth factor pathway through increased expression of topomyosin receptor kinase A, transient receptor potential channel vanilloid subfamily type 1, and mitogen-activated protein kinase phosphorylation.

Comparative Ultrastructures of the Fertilized Egg Envelopes in Danio rerio and Danio rerio var. frankei, Cyprinidae, Teleostei

  • Joo, Kyung Bok;Kim, Dong Heui
    • Applied Microscopy
    • /
    • 제43권1호
    • /
    • pp.14-20
    • /
    • 2013
  • The leopard danio, Danio rerio var. frankei is a spotted color morph of the zebrafish, Danio rerio caused by a pigment mutation. The structural differences of fertilized egg and egg envelope are poorly documented. To clarify this, we compared the fertilized egg morphology and ultrastructures of surface structures, the micropyle and the cross section of fertilized egg envelopes of zebrafish and leopard danio, variation species of zebrafish using a light and electron microscopes. Although the fertilized egg sizes were different, the external shapes of the fertilized eggs of two species couldn't be differentiated under the light microscope. The characteristics of fertilized eggs, such as a spherical shape, a non-adhesive quality and a large perivitelline space, were shown to be related to spawning habit. In ultrastructure of fertilized egg envelope, there is no morphological difference of micropyle between two species. By contrast, the ultrastructure and the numbers of knob-like structures and semihemisphere-like structures per unit area on the outer surface, and the number of lamellae of inner layer on the fertilized egg envelope section displayed definite species specificity. Collectively, our data indicate that the ultrastructure of fertilized egg envelope in the zebrafish could be differentiated by species variation.

Ginsenoside Rg1 Reduced Spontaneous Epileptiform Discharges and Behavioral Seizure in the Zebrafish

  • Lee, Yun-Kyoung;Park, Eun-Jin;Lee, Sang-Hun;Kim, Yeon-Hwa;Lee, Chang-Joong
    • Journal of Ginseng Research
    • /
    • 제33권1호
    • /
    • pp.48-54
    • /
    • 2009
  • Epileptifrom discharges were induced in the telencephalon of the adult zebrafish via perfusion with pentylenetetrazole (PTZ), bicuculline methiodide, kainic acid-treated artificial cerebrospinal fluid (aCSF), and $Mg^{2+}$-free aCSF. Ginseng total saponin [GTS ($50{\mu}g/ml$)] was shown to attenuate the occurrence rate of epilpetiform discharges by 50-75%, compared to the control. Ginsenoside $Rg_1$ ($130{\mu}M$) reduced the epileptiform discharges in the isolated telencephalon and delayed the occurrence of behavioral seizures observed from the adult zebrafish placed in the PTZ (10 mM)-containing aquarium water. However, Re was not effective in the suppression of epileptiform discharges and behavioral seizures. These results indicate that $Rg_1$ may be useful in the control of epileptiform discharges and effective in controlling behavioral seizures, and that the zebrafish can be used as a model animal for the testing of potential anticonvulsant drugs.

Generation of mmp15b Zebrafish Mutant to Investigate Liver Diseases

  • Kim, Oc-Hee;An, Hye Suck;Choi, Tae-Young
    • 한국발생생물학회지:발생과생식
    • /
    • 제23권4호
    • /
    • pp.385-390
    • /
    • 2019
  • Upon gene inactivation in animal models, the zebrafish (Danio rerio) has become a useful model organism for many reasons, including the fact that it is amenable to various forms of genetic manipulation. Genome editing is a type of genetic engineering in which DNA is inserted, deleted, modified, or replaced in the genome of a living organism. Mainly, CRISPR (clustered regularly interspaced short palindromic repeats) Cas9 (CRISPR-associated protein 9) is a technology that enables geneticists to edit parts of the genome. In this study, we utilized this technology to generate an mmp15b mutant by using zebrafish as an animal model. MMP15 is the membrane-type MMP (MT-MMP) which is a recently identified matrix metalloproteinase (MMP) capable of degrading all kinds of extracellular matrix proteins as well as numerous bioactive molecules. Although the newly-established mmp15b zebrafish mutant didn't exhibit morphological phenotypes in the developing embryos, it might be further utilized to understand the role of MMP15 in liver-related diseases, such as liver fibrosis, and associated pathogeneses in humans.

Innate Color Preference of Zebrafish and Its Use in Behavioral Analyses

  • Park, Jong-Su;Ryu, Jae-Ho;Choi, Tae-Ik;Bae, Young-Ki;Lee, Suman;Kang, Hae Jin;Kim, Cheol-Hee
    • Molecules and Cells
    • /
    • 제39권10호
    • /
    • pp.750-755
    • /
    • 2016
  • Although innate color preference of motile organisms may provide clues to behavioral biases, it has remained a longstanding question. In this study, we investigated innate color preference of zebrafish larvae. A cross maze with different color sleeves around each arm was used for the color preference test (R; red, G; green, B; blue, Y; yellow). The findings showed that 5 dpf zebrafish larvae preferred blue over other colors (B > R > G > Y). To study innate color recognition further, tyrosinase mutants were generated using CRISPR/Cas9 system. As a model for oculocutaneous albinism (OCA) and color vision impairment, tyrosinase mutants demonstrated diminished color sensation, indicated mainly by hypopigmentation of the retinal pigment epithelium (RPE). Due to its relative simplicity and ease, color preference screening using zebrafish larvae is suitable for high-throughput screening applications. This system may potentially be applied to the analysis of drug effects on larval behavior or the detection of sensory deficits in neurological disorder models, such as autism-related disorders, using mutant larvae generated by the CRISPR/Cas9 technique.

3D Light-Sheet Fluorescence Microscopy of Cranial Neurons and Vasculature during Zebrafish Embryogenesis

  • Park, Ok Kyu;Kwak, Jina;Jung, Yoo Jung;Kim, Young Ho;Hong, Hyun-Seok;Hwang, Byung Joon;Kwon, Seung-Hae;Kee, Yun
    • Molecules and Cells
    • /
    • 제38권11호
    • /
    • pp.975-981
    • /
    • 2015
  • Precise 3D spatial mapping of cells and their connections within living tissues is required to fully understand developmental processes and neural activities. Zebrafish embryos are relatively small and optically transparent, making them the vertebrate model of choice for live in vivo imaging. However, embryonic brains cannot be imaged in their entirety by confocal or two-photon microscopy due to limitations in optical range and scanning speed. Here, we use light-sheet fluorescence microscopy to overcome these limitations and image the entire head of live transgenic zebrafish embryos. We simultaneously imaged cranial neurons and blood vessels during embryogenesis, generating comprehensive 3D maps that provide insight into the coordinated morphogenesis of the nervous system and vasculature during early development. In addition, blood cells circulating through the entire head, vagal and cardiac vasculature were also visualized at high resolution in a 3D movie. These data provide the foundation for the construction of a complete 4D atlas of zebrafish embryogenesis and neural activity.

Alk3/Alk3b and Smad5 Mediate BMP Signaling during Lymphatic Development in Zebrafish

  • Kim, Jun-Dae;Kim, Jongmin
    • Molecules and Cells
    • /
    • 제37권3호
    • /
    • pp.270-274
    • /
    • 2014
  • Lymphatic vessels are essential to regulate interstitial fluid homeostasis and diverse immune responses. A number of crucial factors, such as VEGFC, SOX18, PROX1, FOX2C, and GJC2, have been implicated in differentiation and/or maintenance of lymphatic endothelial cells (LECs). In humans, dysregulation of these genes is known to cause lymphedema, a debilitating condition which adversely impacts the quality of life of affected individuals. However, there are no currently available pharmacological treatments for lymphedema, necessitating identification of additional factors modulating lymphatic development and function which can be targeted for therapy. In this report, we investigate the function of genes associated with Bone Morphogenetic Protein (BMP) signaling in lymphatic development using zebrafish embryos. The knock-down of BMP type II receptors, Bmpr2a and Bmpr2b, and type I receptors, Alk3 and Alk3b, as well as SMAD5, an essential cellular mediator of BMP signaling, led to distinct lymphatic defects in developing zebrafish. Therefore, it appears that each constituent of the BMP signaling pathway may have a unique function during lymphatic development. Taken together, our data demonstrate that BMP signaling is essential for normal lymphatic vessel development in zebrafish.

MK-801-induced learning impairments reversed by physostigmine and nicotine in zebrafish

  • Choi, Yong-Seok;Lee, Chang-Joong;Kim, Yeon-Hwa
    • Animal cells and systems
    • /
    • 제15권2호
    • /
    • pp.115-121
    • /
    • 2011
  • Previous studies have demonstrated that N-methyl-D-aspartate (NMDA) receptors and acetylcholine receptors are related to learning and memory in rat and mice. In this study, we examined the effects of MK-801, a non-competitive NMDA receptor antagonist, on learning and memory in zebrafish using a passive avoidance test. We further tested whether or not nicotine, a nicotinic acetylcholine receptor agonist, and physostigmine, an acetylcholinesterase inhibitor, reverse the effects of MK-801. Crossing time was increased significantly in the training and test sessions for the controls. When 20 ${\mu}M$ MK-801 was administered prior to the training session, the crossing time did not increase in either session. The MK-801-induced learning deficit was rescued by pretreatment with 20 ${\mu}M$ physostigmine, and crossing time was increased in the training and test sessions compared to the MK-801-treated zebrafish. Further, the MK-801-induced learning deficit was prevented by pretreatment with 20 ${\mu}M$ nicotine, and crossing time was increased in the training session but not in the test session. These results show that MK-801 induced a learning deficit in zebrafish that was prevented by pretreatment with nicotine and physostigmine.

AcuD Gene Knockout Attenuates the Virulence of Talaromyces marneffei in a Zebrafish Model

  • Feng, Jiao;Chen, Zhiwen;He, Liya;Xiao, Xing;Chen, Chunmei;Chu, Jieming;Mylonakis, Eleftherios;Xi, Liyan
    • Mycobiology
    • /
    • 제47권2호
    • /
    • pp.207-216
    • /
    • 2019
  • Talaromyces marneffei is the only dimorphic species in its genus and causes a fatal systemic mycosis named talaromycosis. Our previous study indicated that knockdown of AcuD gene (encodes isocitrate lyase of glyoxylate bypass) of T. marneffei by RNA interference approach attenuated the virulence of T. marneffei, while the virulence of the AcuD knockout strains was not studied. In this study, T. marneffei-zebrafish infection model was successfully established through hindbrain microinjection with different amounts of T. marneffei yeast cells. After co-incubated at $28^{\circ}C$, the increasing T. marneffei inoculum doses result in greater larval mortality; and hyphae generation might be one virulence factor involved in T. marneffei-zebrafish infection. Moreover, the results demonstrated that the virulence of the ${\Delta}AcuD$ was significantly attenuated in this Zebrafish infection model.