• Title/Summary/Keyword: yoloV8

Search Result 22, Processing Time 0.022 seconds

Performance Analysis of Object Detection Method for Railway Track Equipment Based on YOLO (YOLO 기반 선로 고정장치 객체 탐지 기법의 성능 분석)

  • Junhwi Park;Changjoon Park;Namjung Kim;Jeonghwan Gwak
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.69-71
    • /
    • 2023
  • 본 논문은 YOLO 기반 모델의 철도 시스템 내 선로 고정장치 탐지 성능을 비교하고 분석한다. 여기서 철도 시스템은 열차가 주행하기 위한 선로, 침목, 패스너 등의 구성요소를 포함한다. 침목은 지반과 직접적으로 연결되며, 선로를 지반 위에 안정적으로 지지하고 궤간을 정확하게 유지하는 역할을 한다. 또한, 패스너는 선로를 침목에 단단히 고정시키는 역할을 한다. 이러한 선로 고정장치의 부재는 인명 사고로 이어질 수 있어 지속적인 관리와 유지 보수가 필수적이다. 본 논문에서는 철도 시스템의 선로 고정장치 탐지를 위해 YOLO V5 및 V8 딥러닝 모델의 적용 가능성을 실험적으로 접근하며, 두 모델의 탐지 성능을 비교한다. 실험 결과, YOLO V8 및 V5 모델은 모두 뛰어난 성능을 보이는데, 특히 YOLO V8 모델이 더욱 우수한 성능을 보인다. 이로써 YOLO 알고리즘은 선로 고정장치 탐지에 적합하다는 것을 증명한다. 그러나 일부 False Positive Sample이 관측되었음을 확인하고, 이로부터 모델 성능의 개선이 필요하다는 결론을 도출하였다.

  • PDF

A comparative study on the characteristics of each version of object detection model YOLO (객체탐지모델 YOLO의 버전별 특성 비교 연구)

  • Joon-Yong Kim
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.75-78
    • /
    • 2023
  • 본 논문은 객체탐지 모델 중 주류를 이루고 있는 YOLO의 v1부터 v8까지의 특성을 비교 분석하여 각각의 버전에 최적화할 수 있는 모델에 대한 연구이다. 연구 결과 v1, v2는 정확성이 최우선인 모델에 적합하다. 반면, v3, v4는 속도가 우선인 모델에 적합하다. 또한 v5, v6는 정확도와 속도 사이의 균형이 필요한 모델에 적합하다는 결론을 얻었다. v7, v8은 메모리 및 컴퓨팅 성능에 제약이 있는 경우 주로 적용이 가능하며, 적은 연산과 저 메모리 사용으로 객체를 탐지하여 포즈추정이나 객체 추적 등을 적용할 모델에 적합하다는 결과를 확인하였다.

  • PDF

Using Yolo v8 to Identify Container Damage (Yolo v8을 활용한 컨테이너 파손 확인 및 안전관리에 관한 연구)

  • Gu, Hyeonmo;Kim, Gunwoo;Si, Jiwoo;Hwang, Yongha
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.1098-1099
    • /
    • 2023
  • 다중객체 분석 모델 Yolo를 기반으로 물체를 감지하기 위해서 학습을 진행하고 학습을 통해서 얻어낸 모델을 기반으로 드론을 통해서 얻어낸 영상을 통해 컨테이너 파손이 된 부분을 감지하는 프로젝트를 진행했다.

Object Detection of AGV in Manufacturing Plants using Deep Learning (딥러닝 기반 제조 공장 내 AGV 객체 인식에 대한 연구)

  • Lee, Gil-Won;Lee, Hwally;Cheong, Hee-Woon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.1
    • /
    • pp.36-43
    • /
    • 2021
  • In this research, the accuracy of YOLO v3 algorithm in object detection during AGV (Automated Guided Vehicle) operation was investigated. First of all, AGV with 2D LiDAR and stereo camera was prepared. AGV was driven along the route scanned with SLAM (Simultaneous Localization and Mapping) using 2D LiDAR while front objects were detected through stereo camera. In order to evaluate the accuracy of YOLO v3 algorithm, recall, AP (Average Precision), and mAP (mean Average Precision) of the algorithm were measured with a degree of machine learning. Experimental results show that mAP, precision, and recall are improved by 10%, 6.8%, and 16.4%, respectively, when YOLO v3 is fitted with 4000 training dataset and 500 testing dataset which were collected through online search and is trained additionally with 1200 dataset collected from the stereo camera on AGV.

A Comparative Study of Deep Learning Techniques for Alzheimer's disease Detection in Medical Radiography

  • Amal Alshahrani;Jenan Mustafa;Manar Almatrafi;Layan Albaqami;Raneem Aljabri;Shahad Almuntashri
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.5
    • /
    • pp.53-63
    • /
    • 2024
  • Alzheimer's disease is a brain disorder that worsens over time and affects millions of people around the world. It leads to a gradual deterioration in memory, thinking ability, and behavioral and social skills until the person loses his ability to adapt to society. Technological progress in medical imaging and the use of artificial intelligence, has provided the possibility of detecting Alzheimer's disease through medical images such as magnetic resonance imaging (MRI). However, Deep learning algorithms, especially convolutional neural networks (CNNs), have shown great success in analyzing medical images for disease diagnosis and classification. Where CNNs can recognize patterns and objects from images, which makes them ideally suited for this study. In this paper, we proposed to compare the performances of Alzheimer's disease detection by using two deep learning methods: You Only Look Once (YOLO), a CNN-enabled object recognition algorithm, and Visual Geometry Group (VGG16) which is a type of deep convolutional neural network primarily used for image classification. We will compare our results using these modern models Instead of using CNN only like the previous research. In addition, the results showed different levels of accuracy for the various versions of YOLO and the VGG16 model. YOLO v5 reached 56.4% accuracy at 50 epochs and 61.5% accuracy at 100 epochs. YOLO v8, which is for classification, reached 84% accuracy overall at 100 epochs. YOLO v9, which is for object detection overall accuracy of 84.6%. The VGG16 model reached 99% accuracy for training after 25 epochs but only 78% accuracy for testing. Hence, the best model overall is YOLO v9, with the highest overall accuracy of 86.1%.

PCB Component Classification Algorithm Based on YOLO Network for PCB Inspection (PCB 검사를 위한 YOLO 네트워크 기반의 PCB 부품 분류 알고리즘)

  • Yoon, HyungJo;Lee, JoonJae
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.8
    • /
    • pp.988-999
    • /
    • 2021
  • AOI (Automatic Optical Inspection) of PCB (Printed Circuit Board) is a very important step to guarantee the product performance. The process of registering components called teaching mode is first perform, and AOI is then carried out in a testing mode that checks defects, such as recognizing and comparing the component mounted on the PCB to the stored components. Since most of registration of the components on the PCB is done manually, it takes a lot of time and there are many problems caused by mistakes or misjudgement. In this paper, A components classifier is proposed using YOLO (You Only Look Once) v2's object detection model that can automatically register components in teaching modes to reduce dramatically time and mistakes. The network of YOLO is modified to classify small objects, and the number of anchor boxes was increased from 9 to 15 to classify various types and sizes. Experimental results show that the proposed method has a good performance with 99.86% accuracy.

The digital transformation of mask dance movement in intangible cultural asset based on human pose recognition (휴먼포즈 인식을 적용한 무형문화재 탈춤 동작 디지털전환)

  • SooHyuong Kang;SungGeon Park;KwangYoung Park
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.678-680
    • /
    • 2023
  • 본 연구는 2022년 유네스코 인류무형유산 대표목록에 등재된 탈춤 동작을 디지털화하여 후속 세대에게 정보를 제공하는 것을 목적으로 한다. 데이터 수집은 국가무형문화제로 지정된 탈춤 단체 13개, 시도무형문화재 단체 5개에 소속된 무형문화재, 전승자 39명이 관성식 모션 캡처 장비를 착용하고, 8대의 카메라를 이용하여 수집하였다. 데이터 가공은 바운딩박스를 수행하였고, 탈춤동작 추정은 YOLO v8을 사용하였고 탈춤 동작 분류는 YOLO v8에 CNN모델을 결합하여 130개의 탈춤을 분류하였다. 연구결과, mAP-50은 0.953, mAP50-95는 0.596, Accuracy 70%를 달성하였다. 향후 학습용 데이터셋 구축량이 늘어나고, 데이터 품질이 개선된다면 탈춤 분류 성능은 더욱 개선될 것이라 기대한다.

Analysis of Building Object Detection Based on the YOLO Neural Network Using UAV Images (YOLO 신경망 기반의 UAV 영상을 이용한 건물 객체 탐지 분석)

  • Kim, June Seok;Hong, Il Young
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.381-392
    • /
    • 2021
  • In this study, we perform deep learning-based object detection analysis on eight types of buildings defined by the digital map topography standard code, leveraging images taken with UAV (Unmanned Aerial Vehicle). Image labeling was done for 509 images taken by UAVs and the YOLO (You Only Look Once) v5 model was applied to proceed with learning and inference. For experiments and analysis, data were analyzed by applying an open source-based analysis platform and algorithm, and as a result of the analysis, building objects were detected with a prediction probability of 88% to 98%. In addition, the learning method and model construction method necessary for the high accuracy of building object detection in the process of constructing and repetitive learning of training data were analyzed, and a method of applying the learned model to other images was sought. Through this study, a model in which high-efficiency deep neural networks and spatial information data are fused will be proposed, and the fusion of spatial information data and deep learning technology will provide a lot of help in improving the efficiency, analysis and prediction of spatial information data construction in the future.

A Study on Fruit Quality Identification Using YOLO V2 Algorithm

  • Lee, Sang-Hyun
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.190-195
    • /
    • 2021
  • Currently, one of the fields leading the 4th industrial revolution is the image recognition field of artificial intelligence, which is showing good results in many fields. In this paper, using is a YOLO V2 model, which is one of the image recognition models, we intend to classify and select into three types according to the characteristics of fruits. To this end, it was designed to proceed the number of iterations of learning 9000 counts based on 640 mandarin image data of 3 classes. For model evaluation, normal, rotten, and unripe mandarin oranges were used based on images. We as a result of the experiment, the accuracy of the learning model was different depending on the number of learning. Normal mandarin oranges showed the highest at 60.5% in 9000 repetition learning, and unripe mandarin oranges also showed the highest at 61.8% in 9000 repetition learning. Lastly, rotten tangerines showed the highest accuracy at 86.0% in 7000 iterations. It will be very helpful if the results of this study are used for fruit farms in rural areas where labor is scarce.

Analysis of performance changes based on the characteristics of input image data in the deep learning-based algal detection model (딥러닝 기반 조류 탐지 모형의 입력 이미지 자료 특성에 따른 성능 변화 분석)

  • Juneoh Kim;Jiwon Baek;Jongrack Kim;Jungsu Park
    • Journal of Wetlands Research
    • /
    • v.25 no.4
    • /
    • pp.267-273
    • /
    • 2023
  • Algae are an important component of the ecosystem. However, the excessive growth of cyanobacteria has various harmful effects on river environments, and diatoms affect the management of water supply processes. Algal monitoring is essential for sustainable and efficient algae management. In this study, an object detection model was developed that detects and classifies images of four types of harmful cyanobacteria used for the criteria of the algae alert system, and one diatom, Synedra sp.. You Only Look Once(YOLO) v8, the latest version of the YOLO model, was used for the development of the model. The mean average precision (mAP) of the base model was analyzed as 64.4. Five models were created to increase the diversity of the input images used for model training by performing rotation, magnification, and reduction of original images. Changes in model performance were compared according to the composition of the input images. As a result of the analysis, the model that applied rotation, magnification, and reduction showed the best performance with mAP 86.5. The mAP of the model that only used image rotation, combined rotation and magnification, and combined image rotation and reduction were analyzed as 85.3, 82.3, and 83.8, respectively.