• 제목/요약/키워드: yield strength of reinforcement

검색결과 201건 처리시간 0.023초

Study of the longitudinal reinforcement in reinforced concrete-filled steel tube short column subjected to axial loading

  • Alifujiang Xiamuxi;Caijian Liu;Alipujiang Jierula
    • Steel and Composite Structures
    • /
    • 제47권6호
    • /
    • pp.709-728
    • /
    • 2023
  • Experimental and analytical studies were conducted to clarify the influencing mechanisms of the longitudinal reinforcement on performance of axially loaded Reinforced Concrete-Filled Steel Tube (R-CFST) short columns. The longitudinal reinforcement ratio was set as parameter, and 10 R-CFST specimens with five different ratios and three Concrete-Filled Steel Tube (CFST) specimens for comparison were prepared and tested. Based on the test results, the failure modes, load transfer responses, peak load, stiffness, yield to strength ratio, ductility, fracture toughness, composite efficiency and stress state of steel tube were theoretically analyzed. To further examine, analytical investigations were then performed, material model for concrete core was proposed and verified against the test, and thereafter 36 model specimens with four different wall-thickness of steel tube, coupling with nine reinforcement ratios, were simulated. Finally, considering the experimental and analytical results, the prediction equations for ultimate load bearing capacity of R-CFSTs were modified from the equations of CFSTs given in codes, and a new equation which embeds the effect of reinforcement was proposed, and equations were validated against experimental data. The results indicate that longitudinal reinforcement significantly impacts the behavior of R-CFST as steel tube does; the proposed analytical model is effective and reasonable; proper ratios of longitudinal reinforcement enable the R-CFSTs obtain better balance between the performance and the construction cost, and the range for the proper ratios is recommended between 1.0% and 3.0%, regardless of wall-thickness of steel tube; the proposed equation is recommended for more accurate and stable prediction of the strength of R-CFSTs.

노후 콘크리트포장 위에 덧씌운 섬유그리드 보강 아스팔트포장의 장기공용성 (Long-term Performance of Fiber Grid Reinforced Asphalt Pavements Overlaid on Old Concrete Pavements)

  • 이주명;백승범;이강훈;김조순;정진훈
    • 한국도로학회논문집
    • /
    • 제19권3호
    • /
    • pp.31-43
    • /
    • 2017
  • PURPOSES : The objective of this study is to verify the effect of fiber grid reinforcement on the long-term performance of asphalt pavement overlaid on old concrete pavement by performing field investigation, laboratory test, and finite element analysis. METHODS : The reflection cracking, roughness, and rutting of fiber grid reinforced overlay sections and ordinary overlay sections were compared. Cores were obtained from both the fiber grid reinforced and ordinary sections to measure bonding shear strength between the asphalt intermediate and asphalt overlay layers. Fracture energy, displacement after yield, shear stiffnesses of the cores were also obtained by analyzing the test results. Finite element analysis was performed using the test results to validate the effect of the fiber grid reinforcement on long-term performance of asphalt pavement overlaid on the old concrete pavement. The fatigue cracking and reflection-cracking were predicted for three cases: 1) fiber grid was not used; 2) glass fiber grid was used; 3) carbon fiber grid was used. RESULTS : The reflection-cracking ratio of fiber grid reinforced sections was much smaller than that of ordinary sections. The fiber grid reinforcement also showed reduction effect on rutting while that on roughness was not clear. The reflection-cracking was not affected by traffic volume but by slab deformation and joint movement caused by temperature variation. The bonding shear strength of the fiber grid reinforced sections was larger than that of the ordinary sections. The fracture energy, displacement after yield, and shear stiffnesses of the cores of the fiber grid reinforced sections were also larger than those of the ordinary sections. Finite element analysis results showed that fatigue cracking of glass or carbon fiber grid reinforced pavement was much smaller than that of ordinary pavement. Carbon fiber grid reinforcement showed larger effect in elongating the fatigue life of the ordinary overlay pavement compared to glass fiber grid reinforcement. The binder type of the overlay layer also affected the fatigue life. The fiber grid reinforcement resisted reflection-cracking and the carbon fiber grid showed the greater effect. CONCLUSIONS :The results of field investigation, laboratory test, and finite element analysis showed that the fiber grid reinforcement had a better effect on improving long-term performance of asphalt pavement overlaid on the old concrete pavement.

철근콘크리트 교각의 소요연성도에 따른 심부구속철근량 산정식 수정 (Modified Equation for Ductility Demand Based Confining Reinforcement Amount of RC Bridge Columns)

  • 이재훈;손혁수
    • 콘크리트학회논문집
    • /
    • 제21권2호
    • /
    • pp.169-178
    • /
    • 2009
  • 현행 도로교설계기준의 철근콘크리트 교각 심부구속 횡방향철근량 산정식은 중심축력을 받는 기둥에서 콘크리트 피복이 탈락된 후 콘크리트 심부만으로 저항하는 축강도가 콘크리트 피복이 탈락되기 이전의 축강도 이상이 되기 위하여 필요한 횡구속 철근비로서 콘크리트 압축강도, 횡방향철근 항복강도 및 단면적비율을 주요변수로 고려하고 있다. 이들 변수 중 피복두께에 따라 달라지는 전체단면적과 심부단면적의 단면적비율은 압축파괴 영역에서의 강도발현 측면을 고려한 변수이므로 교각과 같이 작용축력이 상대적으로 낮아 축력보다는 모멘트에 의해서 지배되는 인장파괴 영역의 연성거동 측면에서는 단면적비율이 미치는 영향은 크지 않다. 그러나 설계기준의 횡방향철근량 산정식 자체가 교각의 내진거동에 중요한 요소인 연성능력을 직접적으로 고려한 식이 아니기 때문에 단면크기가 상대적으로 작은 경우 또는 내구성 등의 확보 차원에서 콘크리트 피복두께가 증가하여 단면적비율이 과도하게 커지는 경우에는 교각의 시공성 및 경제성이 저하될 정도로 많은 횡방향철근량이 요구되는 문제점을 야기한다. 따라서 본 논문에서는 콘크리트 피복두께가 심부구속 횡방향철근량 산정식에 미치는 영향을 비교, 분석하고 보다 합리적인 내진설계를 위한 심부구속 횡방향철근량 산정식을 수정 제안하였으며 국내 외에서 수행된 실험 결과를 바탕으로 제안식의 안전율 및 타당성을 검증하였다.

Neuro-Fuzzy modeling of torsional strength of RC beams

  • Cevik, A.;Arslan, M.H.;Saracoglu, R.
    • Computers and Concrete
    • /
    • 제9권6호
    • /
    • pp.469-486
    • /
    • 2012
  • This paper presents Neuro-Fuzzy (NF) based empirical modelling of torsional strength of RC beams for the first time in literature. The proposed model is based on fuzzy rules. The experimental database used for NF modelling is collected from the literature consisting of 76 RC beam tests. The input variables in the developed rule based on NF model are cross-sectional area of beams, dimensions of closed stirrups, spacing of stirrups, cross-sectional area of one-leg of closed stirrup, yield strength of stirrup and longitudinal reinforcement, steel ratio of stirrups, steel ratio of longitudinal reinforcement and concrete compressive strength. According to the selected variables, the formulated NFs were trained by using 60 of the 76 sample beams. Then, the method was tested with the other 16 sample beams. The accuracy rates were found to be about 96% for total set. The performance of accuracy of proposed NF model is furthermore compared with existing design codes by using the same database and found to be by far more accurate. The use of NF provided an alternative way for estimating the torsional strength of RC beams. The outcomes of this study are quite satisfactory which may serve NF approach to be widely used in further applications in the field of reinforced concrete structures.

철근 콘크리트용 봉강의 역학적 특성의 통계적 변동성 (Statistical Variability of Mechanical Properties of Reinforcements)

  • 김지상;백민희
    • 대한토목학회논문집
    • /
    • 제31권2A호
    • /
    • pp.115-120
    • /
    • 2011
  • 철근콘크리트 부재의 강도는 시공오차, 부재단면치수, 철근 및 콘크리트 재료의 역학적 특성 등의 불확실성 때문에 통계적인 변동성을 보인다. 부재 저항강도의 불확실성을 고려하고 신뢰성을 확보하기 위하여는 이러한 불확실성에 대한 정확한 평가가 필요한데, 국내의 경우 특히 철근의 역학적 특성 변동성에 대한 실험 및 연구가 활발하지 못하여 국내 설계기준작성의 기초가 되는 자료는 주로 외국의 연구 성과를 인용하고 있다. 이 논문에서는 우리나라 실정에 맞는 철근의 확률모델을 개발하기위하여 국내에서 생산된 철근의 강도특성자료를 수집하여 강도와 지름, 생산회사별로 분석하였다. 그 결과 철근의 항복강도의 확률특성은 베타분포로 모델링 하는 것이 타당한 것으로 나타났으며 공칭항복강도와 철근제조회사, 그리고 철근의 직경이 철근강도에 통계적 특성에 큰 영향은 미치지 않는 것으로 나타났다.

Artificial neural network model for the strength prediction of fully restrained RC slabs subjected to membrane action

  • Hossain, Khandaker M.A.;Lachemi, Mohamed;Easa, Said M.
    • Computers and Concrete
    • /
    • 제3권6호
    • /
    • pp.439-454
    • /
    • 2006
  • This paper develops an artificial neural network (ANN) model for uniformly loaded restrained reinforced concrete (RC) slabs incorporating membrane action. The development of membrane action in RC slabs restrained against lateral displacements at the edges in buildings and bridge structures significantly increases their load carrying capacity. The benefits of compressive membrane action are usually not taken into account in currently available design methods based on yield-line theory. By extending the existing knowledge of compressive membrane action, it is possible to design slabs in building and bridge decks economically with less than normal reinforcement. The processes involved in the development of ANN model such as the creation of a database of test results from previous research studies, the selection of architecture of the network from extensive trial and error procedure, and the training and performance validation of the model are presented. The ANN model was found to predict accurately the ultimate strength of fully restrained RC slabs. The model also was able to incorporate strength enhancement of RC slabs due to membrane action as confirmed from a comparative study of experimental and yield line-based predictions. Practical applications of the developed ANN model in the design process of RC slabs are also highlighted.

Deflection ductility of RC beams under mid-span load

  • Bouzid, Haytham;Rabia, Benferhat;Daouadji, Tahar Hassaine
    • Structural Engineering and Mechanics
    • /
    • 제80권5호
    • /
    • pp.585-594
    • /
    • 2021
  • Ductility is very important parameter in seismic design of RC members such as beams where it allows RC beams to dissipate the seismic energy. In this field, the curvature ductility has taken a large part of interest compared to the deflection ductility. For this reason, the present paper aims to propose a general formula for predicting the deflection ductility factor of RC beams under mid-span load. Firstly, the moment area theorem is used to develop a model in order to calculate the yield and the ultimate deflections; then this model is validated by using some results extracted from previous researches. Secondly, a general formula of deflection ductility factor is written based on the developed deflection expressions. The new formula is depended on curvature ductility factor, beam length, and plastic hinge length. To facilitate the use of this formula, a parametric study on the curvature ductility factor is conducted in order to write it in simple manner without the need for curvature calculations. Therefore, the deflection ductility factor can be directly calculated based on beam length, plastic hinge length, concrete strength, reinforcement ratios, and yield strength of steel reinforcement. Finally, the new formula of deflection ductility factor is compared with the model previously developed based on the moment area theorem. The results show the good performance of the new formula.

교량 바닥판의 파괴형태를 고려한 임계보강재비의 이론적 산정 (Theoretical Assessment of Limit Strengthening Ratio of Bridge Deck Based on the Failure Characteristic)

  • 심종성;오홍섭;유재명
    • 콘크리트학회논문집
    • /
    • 제14권1호
    • /
    • pp.110-117
    • /
    • 2002
  • 공용하중의 증가 등에 따른 교량 바닥판의 성능향상 시 바닥판 두께, 콘크리트 강도, 철근강도 그리고 철근비와 더불어 보강재비에 의하여 바닥판의 파괴양상은 바뀌어 질 수 있다. 일반적으로 교량 바닥판의 파괴양상은 주철근 및 배력철근의 항복 이후에 펀칭전단파괴가 발생하는 것으로 나타나고 있으며, 외부부착공법을 적용함에 있어서 이러한 파괴양상을 유지해야 될 것으로 판단된다. 본 연구에서는 바닥판에 사용된 철근비 및 보강재비 등을 주요변수로 하여 항복선 이론 및 소성 펀칭모델 등을 적용한 항복강도 및 파괴강도를 해석하였으며, 철근비에 따른 임계보강재량을 제안하였다.

Probabilistic analysis of anisotropic rock slope with reinforcement measures

  • Zoran Berisavljevic;Dusan Berisavljevic;Milos Marjanovic;Svetlana Melentijevic
    • Geomechanics and Engineering
    • /
    • 제34권3호
    • /
    • pp.285-301
    • /
    • 2023
  • During the construction of E75 highway through Grdelica gorge in Serbia, a major failure occurred in the zone of reinforced rock slope. Excavation was performed in highly anisotropic Paleozoic schist rock formation. The reinforcement consisted of the two rows of micropile wall with pre-stressed anchors. Forces in anchors were monitored with load cells while benchmarks were installed for superficial displacement measurements. The aim of the study is to investigate possible causes of instability considering different probability distributions of the strength of discontinuities and anchor bond strength by applying different optimization techniques for finding the critical failure surface. Even though the deterministic safety factor value is close to unity, the probability of failure is governed by variability of shear strength of anisotropic planes and optimization method used for locating the critical sliding surface. The Cuckoo search technique produces higher failure probabilities compared to the others. Depending on the assigned statistical distribution of input parameters, various performance functions of the factor of safety are obtained. The probability of failure is insensitive to the variation of bond strength. Different sampling techniques should yield similar results considering that the sufficient number of safety factor evaluations is chosen to achieve converged solution.

비부착 포스트텐션 SC합성보의 휨내력에 관한 실험적 연구 (An Experimental Study on Flexural Strength of SC Composite Beams Enforced by Unbonded Post Tension)

  • 김희철;안형준;류수현
    • 한국강구조학회 논문집
    • /
    • 제21권2호
    • /
    • pp.135-144
    • /
    • 2009
  • 본 논문은 기존 SC합성보에 비부착 긴장재의 정착위치와 도입된 긴장량을 변수로하여 포스트텐션 공법으로 휨보강을 실시한 실험체의 보강성능을 평가하여 적절한 휨보강 방법을 제시하고자 하였다. 실험은 각 유형별 실험체를 항복하중까지 가력하고 항복 이후 비부착 포스트텐션 보강을 실시 추가 가력하여 보강성능을 조사하였다. 실험결과 보강된 SC합성보는 보강전에 비해 향상된 항복내력 및 초기강성을 나타냈으며 최대내력의 실험값/이론값은 보강 후 ${0.95{\sim}1.13}$으로 나타났다. 보강 전 중립축과 그 상부에 정착구를 설치한 실험체(D160, 240계열)는 최대내력에서 긴장력의 차이에 따른 변화는 거의 없고 오히려 긴장력이 증가하면 연성이 감소하였으며 보강 후 중립축에 졍착구를 설치한 실험체(D120계열)는 긴장력이 증가하면 최대내력이 증가하고 또한 연성도 증가하여 보강 후 중립축에 대한 적절한 긴장력 보강이 매우 유효함을 알 수 있었다.