• Title/Summary/Keyword: yield propagation

Search Result 172, Processing Time 0.025 seconds

Fatigue Characteristics of SPFC590 Laser Welded Sheet Metal for Automobile Body Panel (자동차 차체용 SPEC590강 레이저 용접판재의 피로특성)

  • 한문식;이양섭
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.143-150
    • /
    • 2003
  • Experimental research has been carried out to investigate the characteristics of the fatigue crack initiation and propagation behavior of Tailor Welded Blank(TB) sheet used for vehicle body. We used three types of specimens which were machined of the same base metal: one is 1.4mm thick, another is 1.6mm thick, and the third(TB specimen) is laser-welded of two specimens(1.4mm and 1.6mm thick ones). The results of tensile and hardness test indicate that the yield strength of the TB specimen is the highest, and the hardness around welding bead is higher than that of base metal. Fatigue strength and fatigue limit of the TB specimen are much superior to those of the base metal up to $10^6$ cycles. The fatigue crack propagation of the heat-affected zone of the TB specimen is slower than that of the base metal. Welding bead has the fastest crack Propagation in the low stress intensity factor range$(\DeltaK)$ region, but the slowest in the high $\DeltaK$ region. The fatigue propagation characteristic of the TB specimen is relatively stable in comparison with that of the base metal in the high ${\Delta}K$ region around over $28MPa\sqrt{m}$.

Machine learning in concrete's strength prediction

  • Al-Gburi, Saddam N.A.;Akpinar, Pinar;Helwan, Abdulkader
    • Computers and Concrete
    • /
    • v.29 no.6
    • /
    • pp.433-444
    • /
    • 2022
  • Concrete's compressive strength is widely studied in order to understand many qualities and the grade of the concrete mixture. Conventional civil engineering tests involve time and resources consuming laboratory operations which results in the deterioration of concrete samples. Proposing efficient non-destructive models for the prediction of concrete compressive strength will certainly yield advancements in concrete studies. In this study, the efficiency of using radial basis function neural network (RBFNN) which is not common in this field, is studied for the concrete compressive strength prediction. Complementary studies with back propagation neural network (BPNN), which is commonly used in this field, have also been carried out in order to verify the efficiency of RBFNN for compressive strength prediction. A total of 13 input parameters, including novel ones such as cement's and fly ash's compositional information, have been employed in the prediction models with RBFNN and BPNN since all these parameters are known to influence concrete strength. Three different train: test ratios were tested with both models, while different hidden neurons, epochs, and spread values were introduced to determine the optimum parameters for yielding the best prediction results. Prediction results obtained by RBFNN are observed to yield satisfactory high correlation coefficients and satisfactory low mean square error values when compared to the results in the previous studies, indicating the efficiency of the proposed model.

Effects of Seed Tuber Processing and Cultural methods on Tuber yield of Amorphophallus Konjac. K. (구약감자의 종서처리 및 재배방법이 수량에 미치는 영향)

  • 이희덕
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.37 no.2
    • /
    • pp.117-122
    • /
    • 1992
  • This experiment was conducted to determine tuber yield increase of Konjac by sowing time, seed tuber split method and cultural methods. Tuber yield per unit area was generally increased in early planting than conventional planting time. Tuber yield of polyethylene film mulching culture among storage methods was high, while the emergence rate of konjac for seedling plus PE mulching, and tunnel culture were prompted by 20 days, and especially seedling was to be greatly controlled due to temperature difference of the day and night at emergence. All of the cutting methods(two and four split method) were higher than conventional method because of increasing number of bulblet, accordingly, that method using seed tuber was profitable for mass propagation. Both botanical characteristics and tuber yield tend to be increased at 30 to 50 percent shading than natural condition.

  • PDF

Mass Propagation of Plug Seedling using Stem Cutting and Their Tuber Yield in Potato

  • Park, Yang-Mun;Song, Chang-Khil;Kang, Bong-Kyoon;Kim, Dong-Woo;Ko, Dong-Hwan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.3
    • /
    • pp.201-206
    • /
    • 1999
  • For the mass production of plug seedlings in cultivar ‘Dejima’ potato (Solanum tuberosum L.) the optimal apical cutting diameter for rooting and rapid multiplication of stem cuttings in hydroponics were determined. In addition, the best planting date was predicted to increase tuber yield of plug seedlings at fall cropping in Cheju-Do, Korea. Days to initial rooting decreased as the cutting diameter was reduced. Plant height, leaf number, root length and root weight per plant were favorable as the cutting diameter was small. The ideal cutting diameter was 1-2 mm in this experiment. In the hydroponic cultures, the Japanese standard (JS) nutrient solution was the most effective for multiplication of stem cuttings. It was able to propagate more than 20 times a month from a single mother plant. Viability of plants, which were derived from plug seedlings using stem cuttings, was excellent when transplanted to the field. The number of tubers and tuber yield in both of the plug seedlings and seed potato planting plots were high when planted on 25 August. The number and yield were reduced when planted on 15 August, 5 September and 15 September. The degree of decrease of tuber yield in the plug seedling planting plot however, was lower than that of seed potatoes when the planting date was late. In the case of small tubers (under 30 g), the number of tubers and tuber yield were evidently increased in the seed potato tuber planting plot; the yield of large tuber (over 80g) in the plug seedling planting plot was higher than that of the seed potato. The total tuber yield per plant in the plug seedling planting plot was less than that of the seed potato; therefore, in order to increase tuber yield it was necessary to increase field plant density.

  • PDF

Performance Evaluation of Jersey Cattle at Islamabad

  • Khan, R.N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.5
    • /
    • pp.695-698
    • /
    • 2002
  • Performance data (from 1985 to 2000) of Jersey cattle imported from USA and maintained at Islamabad, Pakistan were evaluated. The purpose of this study was to assess the genetic merit of Jersey breed under Pakistani environment for further propagation. Cows with at least two calvings were considered for this study; records on 50 daughter-dam pairs were available on production and reproduction performance traits for genetic evaluation. The average age at first calving in parents was $25.2{\pm}2.4$ m as compared to $23.9{\pm}6.6$ m in progeny. Calving interval in parents and progeny was $416{\pm}74$ and $446{\pm}105$ d; lactation length $301{\pm}51$ and $325{\pm}73$ d; lactation milk yield $2,908{\pm}669$ and $2,707{\pm}903$ lit respectively. All these differences were found to be statistically significant except lactation length. The correlations between age at first calving and total lactation milk was -0.25, between calving interval and total lactation milk yield was 0.14, and between lactation length and total lactation milk yield was 0.79. The $h^2$ of these traits were low indicating important role of environment in expressing the genetic potential of animals. The S.E of $h^2$ of all the traits was high due to large variation in data.

Propagation of radiation source uncertainties in spent fuel cask shielding calculations

  • Ebiwonjumi, Bamidele;Mai, Nhan Nguyen Trong;Lee, Hyun Chul;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.3073-3084
    • /
    • 2022
  • The propagation of radiation source uncertainties in spent nuclear fuel (SNF) cask shielding calculations is presented in this paper. The uncertainty propagation employs the depletion and source term outputs of the deterministic code STREAM as input to the transport simulation of the Monte Carlo (MC) codes MCS and MCNP6. The uncertainties of dose rate coming from two sources: nuclear data and modeling parameters, are quantified. The nuclear data uncertainties are obtained from the stochastic sampling of the cross-section covariance and perturbed fission product yields. Uncertainties induced by perturbed modeling parameters consider the design parameters and operating conditions. Uncertainties coming from the two sources result in perturbed depleted nuclide inventories and radiation source terms which are then propagated to the dose rate on the cask surface. The uncertainty analysis results show that the neutron and secondary photon dose have uncertainties which are dominated by the cross section and modeling parameters, while the fission yields have relatively insignificant effect. Besides, the primary photon dose is mostly influenced by the fission yield and modeling parameters, while the cross-section data have a relatively negligible effect. Moreover, the neutron, secondary photon, and primary photon dose can have uncertainties up to about 13%, 14%, and 6%, respectively.

A Study on the Fatigue Behaviors of Cr-Mo-V Alloy for Steam Turbine at High Temperature Difference (터빈용 Cr-Mo-V강의 고온 환경변화에 따른 피로거동에 관한 연구)

  • Song, Sam-Hong;Kang, Myung-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.1
    • /
    • pp.173-179
    • /
    • 1997
  • The high temperature fatigue tests were performed using the specimens taken from Cr-Mo-V steel, widely used as thermal power plant turbine materials for examination fatigue behavior of materials in power plants which have been operated for long periods. The fatigue tests at high temperature were performed at the various temperature and applied stress. The results obtained are summarized as follows : The fatigue crack length increases and the fatigue life decreases with temperature and applied stress according to the same number of stress cycle. The fatigue crack propagation and the fatigue life were much influenced by temperature and applied stress.

A Numerical Approach for Station Keeping of Geostationary Satellite Using Hybrid Propagator and Optimization Technique

  • Jung, Ok-Chul;No, Tae-Soo;Kim, Hae-Dong;Kim, Eun-Kyou
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.1
    • /
    • pp.122-128
    • /
    • 2007
  • In this paper, a method of station keeping strategy using relative orbital motion and numerical optimization technique is presented for geostationary satellite. Relative position vector with respect to an ideal geostationary orbit is generated using high precision orbit propagation, and compressed in terms of polynomial and trigonometric function. Then, this relative orbit model is combined with optimization scheme to propose a very efficient and flexible method of station keeping planning. Proper selection of objective and constraint functions for optimization can yield a variety of station keeping methods improved over the classical ones. Nonlinear simulation results have been shown to support such concept.

The Vector Analysis by Point Matching Method for Semicircular Optical Waveguide (점정합법에 의한 반원형 광도파로 벡터 해석)

  • 라경태;김상덕;김종빈
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.323-326
    • /
    • 1999
  • This paper describes a point matching method that is based on an expansion of the electromagnetic field in terms of a series of Bessel and modified Bessel functions multiplied by trigonometric functions. In this method, the electric and magnetic fields inside the waveguide core are matched to those outside the core at matching points on the boundary to yield matrix equations. As an example applying this method, the paper presents the results of the computation in the form of curves of the propagation constants in a semicircular optical waveguide, be formed by annealing for reduced insertion(radiation) loss when connected to optical fiber. The propagation curves are presented in a form of refractive index independent. Also, it presents relative energy distributions between inside the core and outside the core of various modes and presents field distributions.

  • PDF

Program Development for Measurement and Analysis of Radio Propagation (무선 전파의 측정 및 분석을 위한 프로그램 개발)

  • 고거다;현재섭;강영진;송문규
    • Proceedings of the IEEK Conference
    • /
    • 2003.07a
    • /
    • pp.314-317
    • /
    • 2003
  • In this paper, a measurement and analysis program is developed, that can be utilized to measure and analyze radio propagation characteristics. This program is able to control the measurement instruments including spectrum analyzer through a GPIB interface, and analyze the measured data to yield mean excess delay and RMS delay spread. The measured path loss can be compared with theoretical path loss in free space or inside tunnels. The measured and analyzed results can also be presented in the forms of graphs. As those tasks can be conducted on the measurement spot, this program is very helpful for performing and verifying measurements.

  • PDF