• Title/Summary/Keyword: yield load

Search Result 857, Processing Time 0.04 seconds

Estimating Unsaturated Shear Strength and Yield Load of Compacted Aggregate Sub-base Materials (다져진 보조기층 재료의 불포화 전단강도 및 항복하중 평가)

  • Jeon, Hye-Ji;Park, Seong-Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4D
    • /
    • pp.571-576
    • /
    • 2011
  • In general, conventional road pavements are designed under the assumption that the shear strength of geomaterials are under saturated state. In reality, however, most of the pavement geomaterials exists under the unsaturated state. To deal with this gap between saturated and unsaturated conditions, in this paper, unsaturated shear strength was estimated using the results from the triaxial compression test and soil-water characteristics curves. Then, yield loads were assessed using 2-Dimensional finite element method with the selected nonlinear elastic model and the Mohr-Coulomb yield criteria. In addition, various unsaturated condition and surface layer effects on the yield load of granular materials were identified. Therefore, the results demonstrated would provide a possibility to estimate bearing capacity of paved or unpaved roads using unsaturated soil mechanics.

A Study on the Ultimate Load Assessment and the Performance Prediction of a Wind Turbine (풍력터빈 출력예측 및 극한하중평가에 관한 연구)

  • Kim, Bum-Suk;Eum, Hark-Jin;Kim, Mann-Eung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.5
    • /
    • pp.326-333
    • /
    • 2009
  • Design life-time of a wind turbine is required to be at least 20 years. In the meantime, the wind turbine will experience a lot of load cases such as extreme loads and fatigue loads which will include several typhoons per year and extreme gusts with 50 years recurrence period as well as endless turbulence flow. Therefore, IEC61400-1 specifies design load cases to be considered in the wind turbine design and requires the wind turbine to withstand the load cases in various operational situations. This paper investigates the ultimate loads which the wind turbine will experience for 20 years and their characteristics based on the IEC61400-1 using an aero-elastic software, GH-Bladed. And the performance characteristics of a wind turbine such as electrical power generation and annual energy yield are also investigated.

Ultimate Load Assessment and Performance Prediction of a Horizontal Axis Wind Turbine (수평축 풍력터빈 출력예측 및 극한하중평가)

  • Kim, Bum-Suk;Kim, Mann-Eung;Eum, Hark-Jin
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2880-2885
    • /
    • 2008
  • Design lifttime of a wind turbine is required to be at least 20 years. In the meantime, the wind turbine will experience a lot of load cases such as extreme loads and fatigue loads which will include several typhoons per year and extreme gusts with 50 years recurrence period as well as endless turbulence flow. Therefore, IEC61400-1 specifies design load cases to be considered in the wind turbine design and requires the wind turbine to withstand the load cases in various operational situations. This paper investigates the ultimate loads which the wind turbine will experience for 20 years and their characteristics based on the IEC61400-1 using an aero-elastic software, GH-Blade. And the performance characteristics of a wind turbine such as electrical power generation and annual energy yield are also investigated.

  • PDF

Evaluation of Skin Friction Using Tensile Load Testing of CPR Piles (CPR 말뚝의 인발재하시험을 통한 주면마찰력 평가)

  • Ko, Chin-Surk;Kim, Jung-Han;Noh, Jeongdu;Kang, Seong-Seung
    • The Journal of Engineering Geology
    • /
    • v.30 no.1
    • /
    • pp.59-69
    • /
    • 2020
  • Pull-out load tests were performed on a CPR (Compaction grouting compound Pile with Reinforce) test pile, with skin friction being evaluated by the yield load and allowable bearing capacity after analyzing load-displacement curves and load-settlement curves. Results of the CPR test piles analyzed from the load-displacement curves show that the yield load and allowable bearing capacity of the large-diameter CPR test pile were about 1.4 times larger than that of the small-diameter pile. Results of the load-settlement curves reveal that the allowable bearing capacity of the CPR test pile with diameter of D500 was 1.2~2.1 times greater than that of the pile with diameter of D400. However, the allowable bearing capacity calculated using Fuller's analysis differed substantially from that determined using the P (Pull-out load) - S (Settlement) and log P - log S curves. Therefore, calculation of the allowable bearing capacity using Fuller's analysis is shown to be inappropriate.

The Effect of the Volume of the Cellular Bulkhead on the Yield Load (셀 구조물의 항복하중에 미치는 체적의 영향)

  • Jang, Jeong-Wook;Kim, Hyun-Guk;Lee, Jae-Seok
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.4
    • /
    • pp.197-201
    • /
    • 2015
  • Experimental and numerical analysis has been carried out in this paper to understand correlation between volume and yield of cellular bulkhead. It was firstly confirmed from these results that the conditions and parameters considered in the finite element analysis were reasonable and realistic due to the fact that the yield loads determined by the two different methods were equivalent in actual. Based on this results, a series of intensive numerical analysis has been further performed and revealed that the yield load varied in direct proportion to the change in the volume of the cellular bulkhead.

Evaluation of Strength Properties for Bolted Connections with Lumber from Small Diameter Logs

  • Park, Joo-Saeng;Park, Chun-Young;Chun, Su-Kyoung;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.59-65
    • /
    • 2002
  • EYM (European Yield Model), which was adopted in NDS (National Design Specification for wood construction), has been used in Korea without any verification of the analysis of bolted wood connections. In the case of applying lumber from domestic small diameter logs, however, there are some problems with the direct application of EYM ; 1) relatively low dowel bearing strength and dimensional stability due to a large amount of immature wood, 2) effect of MC (moisture contents) on the dowel bearing strength of wood and the yield load of a bolted connection. To evaluate the strength properties of bolted connections with lumber from domestic small diameter logs, effect of MC on the dowel bearing strength of wood was investigated and double shear bolted connection tests were performed. As the MC of wood increased, the dowel bearing strength was linearly reduced, even under 19% MC, which showed that adjustment, not considered in NDS, was required. Double shear bolted connection tests indicated that effect of MC on yield load should be considered in order to determine design value.

Effect of crop load on the yield, fruit quality, and fruit mineral contents of 'RubyS' apples

  • Nay Myo, Win;Dongyong, Lee;Yang-Yik, Song;Juhyeon, Park;Young Sik, Cho;Moo-Yong, Park;Youngsuk, Lee;Hun Joong, Kweon;Jingi, Yoo;In-Kyu, Kang;Jong-Chul, Nam
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.3
    • /
    • pp.421-430
    • /
    • 2022
  • Crop load management in apple trees is important for achieving optimum productivity and crop value. Hence, we investigated the influence of different crop loads on the fruit quality, mineral content, and yield of the 'RubyS' apple variety. After 4 weeks of full bloom, the crop load was adjusted by hand thinning to different (5, 10, and 15 fruits·cm-2) trunk cross-sectional areas (TCSA), representing low, medium, and high crop loads. The low crop load increased the fruit size and weight, the development of the red-blushed area, and the peel color a* at harvest; however, it reduced the total number of fruits·tree-1 and yield compared with that of the other crop loads. The medium crop load improved the fruit weight, flesh firmness, and soluble solids content and reduced the fruits·tree-1 but did not affect the fruit size and yield. However, there were no significant differences in the titratable acidity and starch index among the crop loads. The fruit mineral content (phosphorus and potassium) was higher in the low and medium crop loads compared to the high crop load. However, the nitrogen, calcium, and magnesium contents in the fruits were not affected by the crop loads. Overall, this study suggests that a low crop load improves the fruit size and weight, but its effect on the quality and fruit mineral content is similar to that of a medium crop load. Therefore, the optimum crop load level for the 'RubyS' apple trees was approximately 10 fruits·cm-2 TCSA.

A Comparative Study on the Evaluation of Bearing Capacity for Driven Pile in Static Load Test (현장정재하시험 결과를 통한 타입말뚝 지지력 판정법 비교 연구)

  • Chun, Byung-Sik;Seo, Deok-Dong;Choi, Heon-Kil;Yoon, Hwan-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.677-686
    • /
    • 2005
  • The allowable bearing capacity of a pile, the most important factor in stability estimation, is determined by applying safety factor to the ultimate load or yield load. There are several but contradictory methods available in current design codes to estimate the allowable bearing capacity and the safety factor. This paper analyzes load-settlement curves obtained from 19 static load tests measured from 11 sites. At all tests, the load is applied until apparent failure is observed. The validity of the ultimate and yield load estimation method and load caculated from the settlement criterion is investigated through comparison with the measured data. In addition, a new procedure to estimate allowable load and safety factor is proposed. Additional data from field static load tests, such as those incorporated in this study, are needed to more reliably apply the proposed method in design practice.

  • PDF

Load capacity of high-strength reinforced concrete slabs by yield line theory

  • Gorkem, Selcuk Emre;Husem, Metin
    • Computers and Concrete
    • /
    • v.12 no.6
    • /
    • pp.819-829
    • /
    • 2013
  • The objective of this study is to determine whether or not the yield line theory, an effective method widely used for slabs made of ordinary concrete, can be used also for the reinforced concrete slabs made of high-strength concrete. Flexural behavior of simply supported slabs in three different sizes were investigated under concentrated load at mid-span. Additionally, behavior of high strength reinforced concrete slabs with 50 mm and 150 mm reinforcement spacings also studied. Failure loads, deflections, experimental and theoretical failure mechanisms were evaluated. The difference between the moments based on yield line theory and experimental moments varied between 1% to 3%. Experimental and analysis results revealed that yield line analysis could conveniently be employed in the analysis of high strength reinforced concrete slabs.