• Title/Summary/Keyword: yield force

Search Result 507, Processing Time 0.024 seconds

On Minimum Time Joint-Trajectory Planning for the Cartesian Straight Line Motion of Industrial Robot (산업용 로보트의 카르테시안 직선 운동을 위한 조인트-궤적의 최소 시간화)

  • 전홍태;오세현
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.5
    • /
    • pp.753-761
    • /
    • 1987
  • Approximation of a Cartesian straight line motion with linear interpolation in the joint space has many desirable advantages and applications. But inappropriate determination of the corresponding subtravelling and transition times makes such joint-trajectories violate the input torque/force constraints. An approach that can overcome this difficult and yield the joint trajectories utilizing the allowable maximum input torque/force is established in this paper. The effectiveness of these results is demonstrated by using a three-joint revolute manipulator.

  • PDF

A Study on the Metrial Charcterisitics of Material Quality and Milling of Axle Materials for a Automobile (자동차 차축 소재의 금속적 특징 및 밀링 절삭 특성 연구)

  • 채왕석
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.1
    • /
    • pp.77-83
    • /
    • 1997
  • In this paper, we have studied internal quality including chemical compositions, microscopic structure and nonmetalic inclusion of test materials. We have analyzed dynamic characteristics of cutting force of milling including tensile strength value, hardness etc. Test materials are used in the tempered carbon steel and the non-tempered carbon steel. The obtained results are as follows: 1. In analyzing internal quality, the tempered carbon steel have typical martensite structure and the non-tempered carbon steel have ferrite + pearlite structure. 2. Yield strength, tensile strength and hardness value are in the non-tempered carbon steel but elongation is maximum value in the tempered carbon steel. 3. Cutting force is smaller non-tempered carbon steel than tempered carbon steel when feed speed and depth on cut is constant. 4. Cutting force is smaller non-tempered carbon steel than tempered carbon steel when cutting speed and depth of cut is constant.

  • PDF

An Angle-Binder Drawbead Simulator for Measuring Drawbead Forces on Inclined Binder Surface (경사진 바인더면의 드로우비드력을 측정하기 위한 모의실험장치)

  • Yang, W.H.;Choi, K.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.180-184
    • /
    • 2009
  • A novel set of experimental test tooling for measuring pulling and holding forces for drawbeads on binders inclined at a wide range of angles is introduced. A mechanical design featuring a single load cell, a male-female draw bead set, translation and rotation degrees of freedom, and a screw-driven clamping system has been incorporated into a standard tensile test machine. On a real time basis, restraining and holding force data with respect to draw-in displacement may be directly downloaded into a PC for data processing. The proposed experimental system represents a significant breakthrough in drawbead simulation technology due to its relatively low cost, clever design, and versatility. The system is shown to yield excellent experimental data suitable for verifying theory and numerical model predictions.

  • PDF

A Study on the Machining Charcterisitics of Milling of cylinderical Rod Materials for Passenger Car (승용차용 CYLINDER ROD 소재의 밀링 적삭 특성 연구)

  • 채왕석
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.03a
    • /
    • pp.143-148
    • /
    • 1996
  • In this paper, we have studied internal quality including chemical compositions, microscopic structure and nonmetalic inclusion of test materials. We have analyzed dynamic characteristics of cutting force of milling including tensile strength value hardness etcs. Test materials are used the tempered carbon steel and the non-tempered carbon steel. The obtained results are as follows: 1.In analyzing internal quality, the tempered carbon steel have typical martensite structure and the non-tempered carbon steel have ferrite+pearlite structure. 2.Yield strength, tensile strength and hardness value are in the non-tempered carbon steel but elongation is maximum value in the tempered carbon steel. 3.Cutting force is smaller non-tempered carbon steel than tempered carbon steel when feed speed and depth of cut is constant. 4.Cutting force is smaller to the tempered carbon steel and smaller non-tempered carbon steel than tempered carbon steel when cutting conditions

  • PDF

Experimental, numerical and analytical studies on a novel external prestressing technique for concrete structural components

  • Lakshmanan, N.;Saibabu, S.;Murthy, A. Rama Chandra;Ganapathi, S. Chitra;Jayaraman, R.;Senthil, R.
    • Computers and Concrete
    • /
    • v.6 no.1
    • /
    • pp.41-57
    • /
    • 2009
  • This paper presents the details of a novel external prestressing technique for strengthening of concrete members. In the proposed technique, transfer of external force is in shear mode on the end block thus creating a complex stress distribution and the required transverse prestressing force is lesser compared to conventional techniques. Steel brackets are provided on either side of the end block for transferring external prestressing force and these are connected to the anchor blocks by expansion type anchor bolts. In order to validate the technique, an experimental investigation has been carried out on post-tensioned end blocks. Performance of the end blocks have been studied for design, cracking and ultimate loads. Slip and slope of steel bracket have been recorded at various stages during the experiment. Finite element analysis has been carried out by simulating the test conditions and the responses have been compared. From the analysis, it has been observed that the computed slope and slip of the steel bracket are in good agreement with the corresponding experimental observations. A simplified analytical model has been proposed to compute load-deformation of the loaded steel bracket with respect to the end block. Yield and ultimate loads have been arrived at based on force/moment equilibrium equations at critical sections. Deformation analysis has been carried out based on the assumption that the ratio of axial deformation to vertical deformation of anchor bolt would follow the same ratio at the corresponding forces such as yield and ultimate. It is observed that the computed forces, slip and slopes are in good agreement with the corresponding experimental observations.

Behaviour insights on damage-control composite beam-to-beam connections with replaceable elements

  • Xiuzhang He;Michael C.H. Yam;Ke Ke;Xuhong Zhou;Huanyang Zhang;Zi Gu
    • Steel and Composite Structures
    • /
    • v.46 no.6
    • /
    • pp.773-791
    • /
    • 2023
  • Connections with damage concentrated to pre-selected components can enhance seismic resilience for moment resisting frames. These pre-selected components always yield early to dissipate energy, and their energy dissipation mechanisms vary from one to another, depending on their position in the connection, geometry configuration details, and mechanical characteristics. This paper presents behaviour insights on two types of beam-to-beam connections that the angles were designed as energy dissipation components, through the results of experimental study and finite element analysis. Firstly, an experimental programme was reviewed, and key responses concerning the working mechanism of the connections were presented, including strain distribution at the critical section, section force responses of essential components, and initial stiffness of test specimens. Subsequently, finite element models of three specimens were established to further interpret their behaviour and response that were not observable in the tests. The moment and shear force transfer paths of the composite connections were clarified through the test results and finite element analysis. It was observed that the bending moment is mainly resisted by axial forces from the components, and the dominant axial force is from the bottom angles; the shear force at the critical section is primarily taken by the slab and the components near the top flange. Lastly, based on the insights on the load transfer path of the composite connections, preliminary design recommendations are proposed. In particular, a resistance requirement, quantified by a moment capacity ratio, was placed on the connections. Design models and equations were also developed for predicting the yield moment resistance and the shear resistance of the connections. A flexible beam model was proposed to quantify the shear resistance of essential components.

The Specified Minimum Yield Stress of SM570TMC in Composite Columns (SM570TMC강의 매입형 합성기둥 적용시 설계기준 항복강도에 관한 연구)

  • Lee, Myung Jae;Oh, Young Suk;Lee, Eun Teak
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.1
    • /
    • pp.195-203
    • /
    • 2008
  • This paper aims to evaluate the yield stress of SM570TMC concrete-filed H-shape steel columns subjected to axial force. These columns were evaluated and compared using quasi-static tests. The displacements and the axial loads column specimens were measured during the tests, and test results showed that the yield stress of concrete-filed H-shape steel columns subjected to axial load could be predicted using the previously proposed yield stress of steel columns.

Comparison of Yield, Physico-chemical and Sensory Characteristics for Chicken Surimi Manufactured by Alkaline Adjustment with Different Raw Materials (원료육 종류에 따라 알칼리 조절법으로 제조한 계육 수리미의 수율, 이화학적 및 관능적 특성 비교)

  • Jin, Sang-Keun;Kim, Il-Suk;Kim, Dong-Hoon;Jeong, Ki-Jong;Choi, Yeung-Joon
    • Food Science of Animal Resources
    • /
    • v.26 no.4
    • /
    • pp.431-440
    • /
    • 2006
  • This study was carried out to compare of yield, physico-chemical and sensory characteristics for chicken surimi manufactured by alkaline (pH 11) adjustment with different raw materials. Four experimental groups were surimi with chicken breast (T1) and chicken leg (T2) by spent hen, SF-MDCM (T3) and JY-MDCM (T4). Yield was higher in order of T1>T2>T3>T4 (p<0.05). The yield, physico-chemical and sensory characteristics of T1 were significantly higher than those of other treatments. Especially, $L^*$ and W value, shear force, textural properties, folding test, breaking force, gel strength, breaking $force{\times}deformation$, flavor, color and overall acceptability were higher in T1 but ar value, cooking loss, collagen and myoglobin content of T1 were lower than those of other treatments (p<0.05). Deformation, aroma, juiciness, tenderness were higher but met-myoglobin and yield of T4 were lower than those of T2 and T3 (p<0.05). Crude fat cooking loss and met-myoglobin content were higher in T2 but $b^*$ value, brittleness, hardness, gumminess, chewiness, folding test, breaking $force{\times}deformation$ and aroma of T2 were lower than those of other treatments (p<0.05). pH, collagen and moisture content and br value were higher but crude protein, folding test, $L^*$ and W value, cohesiveness, tenderness of T3 were lower than those of other treatmene (p<0.05). Correlation coefficients (r>0.8) between folding test and other items was positive in crude protein $L^*$ value, shear force and cohesiveness but negative in moisture content (p<0.05).

Yield monitoring systems for non-grain crops: A review

  • Md Sazzadul Kabir;Md Ashrafuzzaman Gulandaz;Mohammod Ali;Md Nasim Reza;Md Shaha Nur Kabir;Sun-Ok Chung;Kwangmin Han
    • Korean Journal of Agricultural Science
    • /
    • v.51 no.1
    • /
    • pp.63-77
    • /
    • 2024
  • Yield monitoring systems have become integral to precision agriculture, providing insights into the spatial variability of crop yield and playing an important role in modern harvesting technology. This paper aims to review current research trends in yield monitoring systems, specifically designed for non-grain crops, including cabbages, radishes, potatoes, and tomatoes. A systematic literature survey was conducted to evaluate the performance of various monitoring methods for non-grain crop yields. This study also assesses both mass- and volume-based yield monitoring systems to provide precise evaluations of agricultural productivity. Integrating load cell technology enables precise mass flow rate measurements and cumulative weighing, offering an accurate representation of crop yields, and the incorporation of image-based analysis enhances the overall system accuracy by facilitating volumetric flow rate calculations and refined volume estimations. Mass flow methods, including weighing, force impact, and radiometric approaches, have demonstrated impressive results, with some measurement error levels below 5%. Volume flow methods, including paddle wheel and optical methodologies, yielded error levels below 3%. Signal processing and correction measures also play a crucial role in achieving accurate yield estimations. Moreover, the selection of sensing approach, sensor layout, and mounting significantly influence the performance of monitoring systems for specific crops.

Prediction of Drawbead Restraining Force by Hybrid Membrane/Bending Method (하이브리드 박막/굽힘 방법을 이용한 드로비드력의 예측)

  • Lee, M.G.;Chung, K.;Wagoner, R.H.;Keum, Y.T.
    • Transactions of Materials Processing
    • /
    • v.15 no.8 s.89
    • /
    • pp.533-538
    • /
    • 2006
  • A simplified numerical procedure to predict drawbead restraining forces(DBRF) has been developed based on the hybrid membrane/bending method which superposes bending effects onto membrane solutions. As a semi-analytical method, the new approach is especially useful to analyze the effects of various constitutive parameters. The present model can accommodate general anisotropic yield functions along with non-linear isotropic-kinematic hardening under the plane strain condition. For the preliminary results, several sensitivity analyses for the process and material effects such as friction, drawbead depth, hardening behavior including the Bauschinger effect and yield surface shapes on the DBRF are carried out.