• Title/Summary/Keyword: yellow soil

Search Result 301, Processing Time 0.027 seconds

The Effect of Yellow Soil on Mortality of Korean Scallops, Patinopecten yessoensis at Indoor Tank

  • Oh, Bong-Se;Jung, Choon-Koo;Kwon, Mun-Gyeong;Lee, Jung-Sick
    • The Korean Journal of Malacology
    • /
    • v.26 no.3
    • /
    • pp.179-183
    • /
    • 2010
  • In other to understand the effect of yellow soil to mortality of Korean scallops, P. yessoensis, We investigated its mortality at indoor tanks. The environmental conditions such as water temperature, Salinity, Do and pH were continued constantly during the experimental periods. The 100% of survival rate showed in two experiments groups such as 0.1% and 0.4% of concentration of yellow soil and the other groups as 0.05% and 0.2% of concentration of yellow soil was appeared one dead scallop at each group for 8 days of the experiment periods. the gills of scallop in high concentration of yellow soil (0.2% and 0.4% groups) were covered by yellow soil particles so that this group's scallop should be got a high stress from yellow soil. I think this situation will be more continued for long time the scallop will become to dead. The results of bacteriological analysis did not isolated from haemolymph of scallops and no Perkinsus infectious disease in scallops and the scallops showed necrosis and degeneration on digestive grand and gills of scallop.

Improvement of Comfortability and Ability on Nonwoven Fabric for Disposable Work Clothing Using Yellow Soil Printing (황토 날염을 이용한 일회용 작업복 소재의 쾌적성 및 기능성 향상에 관한 연구)

  • Jung, Myung-Hee;Park, Soon-Ja;Koshiba, Tomoko;Tamura, Teruko;Shin, Jung-Sook
    • The Research Journal of the Costume Culture
    • /
    • v.15 no.2 s.67
    • /
    • pp.276-283
    • /
    • 2007
  • The purpose of this study were to investigate characteristic changes on nonwoven fabric for disposable work clothes by the yellow soil printing. It separate grind yellow soil as two different size of particles $45\sim52{\mu}m$ and $53\sim65{\mu}m$ for hand screen printing on three kind of nonwoven fabrics. To examine the effect of yellow soil printing on nonwoven fabric were to observe, dyeability by using spectrophotometer, moisture regain by oven method, air permeability, anion property and antibacterial activity. The results were as follows: When yellow soil concentration increased from 5 to 10%, K/S value also increased from 1.05 to 1.88. When yellow soil concentration increased, moisture regain also increased. In same concentration, moisture regain occurred higher as particle of small size. Air permeability decreased when the charcoal printing concentration increased. Anion occurrence appeared $140\sim160ion/cc$ from three different kinds of nonwoven fabrics in 3% and 9% yellow soil concentration. Therefore, occurred anion ineffectively. In concentration of 3%, rate of deodorization measured as 89%, 83% and 87%, and 9% concentration caused 96%, 86% and 93% of high deodorization. Antibacterial activity examination in nonfinished nonwoven fabric resulted range of 60%, however, 3% and 9% concentration finished nonwoven fabric resulted 99.9% of excellent antibacterial activity Surface temperature increased $1.5\sim2^{\circ}C$ by yellow soil finishing.

  • PDF

Influence of Upland Soil Texture on Dry Weight and Growth of Yellow Mustard as a Landscape and Green Manure Crop

  • Cho, Hyeoun-Suk;Seo, Myung-Chul;Park, Tea-Seon;Kim, Jun-Hwan;Sang, Wan-gyu;Shin, Pyeong;Lee, Geon-Hwi
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.6
    • /
    • pp.677-682
    • /
    • 2015
  • Although it is not a landscape crop according to MIFAFF(ministry of agriculture, food and rural affairs), yellow mustard is considered a superb landscape crop because of its growth and flower characteristics. We sowed yellow mustard as a landscape and green manure crop in upland soil (four types of soil texture) in spring. And we studied its flowering characteristics, dry weight, and nitrogen yield. The growths of yellow mustard were possible in every soil ranging from sandy soil to clay loam. Its height was 54.1 ~ 76.1cm and the number of node per hill was 11.3 ~ 17.0. Its flowers had a light yellow. It took about 44 ~ 50 days to flower, and flowered for 22~25 days. The dry weight of yellow mustard was $2.27{\sim}3.60tonha^{-1}$ with highest in sandy loam and loam. Among the nutrients of yellow mustard, nitrogen(T-N) was $12.6{\sim}20.8gkg^{-1}$, and C/N ratio was 21.6~37.7. The nitrogen yield of yellow mustard was $35{\sim}62kgha^{-1}$. In conclusion, because of its flowering characteristics and dry weight, yellow mustard was considered appropriate for both green manure and landscape crop uses.

Characteristic Changes of Disposable Clothes Fabric on Printing using Natural Dyeing (천연염재를 활용한 일회용 작업복 소재의 기능성 특성 평가)

  • Shin Jung-Sook
    • The Research Journal of the Costume Culture
    • /
    • v.12 no.6 s.53
    • /
    • pp.1010-1020
    • /
    • 2004
  • The purposes of this study were to investigate characteristic changes on nonwoven fabric by the charcoal and the yellow soil printing. It separate the grind charcoal and the yellow soil as two different size of particles $45{\sim}52{\mu}m\;and\;53{\sim}65{\mu}m$ for hand screen printing on three kind of nonwoven fabrics. To examine the effect of the charcoal and the yellow soil printing on nonwoven fabric were to observe surface changes by a scanning electron microscope, dyeability by using spectrophotometer, moisture regain by oven method, deodorization and antibacterial activity. The results were as follows: When the charcoal and the yellow soil powder concentration increased from 3 to $9\%$ or from 5 to $10\%$, K/S value also increased from 3.06 to 8.55 or from 1.14 to 1.80. The charcoal and the yellow soil moisture regain also increased. In same concentration, moisture regain occurred higher as particle of small size. In concentration of charcoal $3\%$, rate of deodorization measured as $89\%,\;83\%\;and\;87\%,\;and\;9\%$ concentration caused $96\%,\;86\%\;and\;93\%$ of high deodorization. In concentration of 5, $10\%$ of yellow soil, rate of deodorization measured as $85\%$ over. Antibacterial activity examination in nonfinished nonwoven fabric resulted range of $60\%$, however, $3\%\;and\;9\%$ concentration finished nonwoven fabric resulted $99.9\%$ of excellent antibacterial activity. Also $5\%,\;10\%$ yellow soil concentration was appeared same resoult.

  • PDF

Development of Lighting Compressed by Injection Yellow Ocher Soil

  • Kwak, Woo-Seob
    • Journal of the Korea Furniture Society
    • /
    • v.19 no.6
    • /
    • pp.452-459
    • /
    • 2008
  • The compressed injection yellow ocher soil is the process-technology by drying the product through sunshine, not by firing like pottery and ceramic ware. It is the technology of development being able to achieve the far infrared ray and humidity adjustment by adding recycling paper, Korean paper and bamboo salt, and it corresponds with the construction enforcement ordinance 2007 as an interior-finishing product which is fire-resistant. In case that the yellow ocher soil would be used as lighting device and interior-finishing material and decoration, it could contribute to an improvement of National Health by avoiding the sick house syndrome and adding humidity adjustment, and it has more efficient economic effect due to using recycle-available additives. Through such developments of the yellow ocher soil products the domestic market of lighting device and construction material can be advanced and the replacement effect of imported goods & also export effect can be expected accordingly.

  • PDF

Removal Characteristics of NOx Using a Soil-Biofilter (토양 Bio-Filter를 이용한 질소산화물 제거특성)

  • Cho Ki-Chul;Ko Byeung-Ik;Lee Nae-Hyun;Cho Il-Hyoung
    • Journal of Environmental Science International
    • /
    • v.15 no.2
    • /
    • pp.133-139
    • /
    • 2006
  • Soil biofiltration is an environmentally-sound technology for elimination of VOCs, odorous and NOx compounds from a low concentration, high volume waste gas streams because of its simplicity and cost-effectiveness. This study was performed to evaluate effect of removal of gaseous NOx using a soil and a yellow soil. Over $60\%\;and\;48\%$ of NOx from a soil and a yellow soil was removed at the inlet NO concentrations of $423\~451$ppb, respectively. The bio-filter using a soil media was capable of purifying NOx with a different natural processes. Although some of the processes are quite complex, they can broadly be summarized as adsorption into soil pore water, and biochemical transformations by soil bacteria. When the filteration bio-reactor was applied to a soil and a yellow soil, effective NOx removal was obtained for several times and months. These results show that a soil biofilter can be of use as an alternative advanced NOx treatment system.

Evaluation on the Physical Characteristics of Cement-Type Solidification using Weathered Granite St Yellow Soil as an Aggregate (마사토, 황토를 골재로 이용한 시멘트계 고화재의 물리적 특성 평가)

  • 김특준;김인섭;이종규;추용식;김병익;김남호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.601-606
    • /
    • 2002
  • This study explored physical properties of a hardened cement and a concrete specimen using a high performance cement type solidification consisting of a weathered granite soil and a yellow soil mainly. Also the development of high performance cement type solidification was purposed for an intensity improvement and a long-term durability. As the experimental results, a mortar used by the weathered granite soil shows positive result, however using the yellow soil as a mortar Shows less positive result at the compressive strength. Also the dynamic modulus of elasticity measurement result, the concrete specimens used by the weathered granite and the yellow soil reached above 90%, so it seems to have the durability of freezing and thawing.

  • PDF

Individual Particle Analysis for Developing a Source Profile of Yellow Sands (황사의 오염원분류포 개발을 위한 개별입자분석)

  • 강승우;김동술
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.6
    • /
    • pp.565-572
    • /
    • 2000
  • To quantitatively estimate mass contribution of long-range transported yellow sand, their sources should be separated independently from various local soil sources having similar elemental compositions. While it is difficult to estimate total mass loadings of pure yellow sand by traditional bulk analysis, it can be clearly solved by an particle-by-particle analysis. To perform this study, two yellow sand samples and three local soil samples were collected by a mini-volume sampler. These samples were three analyzed using a scanning electron microscope(SEM) equipped with an energy dispersive x-ray analyser (EDX) was used to obtain basic chemical information of individual yellow san particles. A total of 19 elements in a single particle were measured to develop a source profile with newly created homogeneous particle classes (HPCs) as chemical variables. The present study showed that the yellow sand samples as well as three local soil samples were characterized with reasonably well created HPCs. Finally the mass fraction of each HPC in each sample was calculated and then compared each other.

  • PDF

Characteristics of Heavy Metallic Elements of PM10 for Yellow sand and Non-Yellow sand during Springtime of 2002 at Busan (2002년 부산지역 봄철 황사/비황사시 PM10 중의 중금속 농도 특성)

  • Jeon, Byung-Il
    • Journal of Environmental Impact Assessment
    • /
    • v.12 no.2
    • /
    • pp.99-108
    • /
    • 2003
  • We collected and analyzed PM10 samples to account for the characteristics of heavy metallic elements for yellow sand and non-yellow sand during springtime of 2002 at Busan, The mean PM10 mass concentration for springtime of 2002 was $219.82{\mu}g/m^3$ with the maximum $787.50{\mu}g/m^3$ and the minimum $19.44{\mu}g/m^3$. The mean concentration of metallic elements contained in PM10 are shown as follows : Si>Ca>Fe>Al>Na, respectively. The ratio of mean PM10 mass concentration for yellow sand($362.7{\mu}g/m^3$) to that for non-yellow sand($48.3{\mu}g/m^3$) was 7.5, the significant positive correlation (P<0.05) was found between yellow sand and non-yellow sand. The metallic elements concentration ratios of yellow sand to the non-yellow sand were over 10 times for Al, Ca, Mg, 4~8 times for Fe, Si, Mn. But the concentration of Na, Cu, Zn for non-yellow sand was higher than those of yellow sand. The crustal enrichment factor of Cd, Cu, Pb, Zn, Cr, K, Mn, Na, Ni for yellow sand was higher that of non-yellow sand over 10 times, and concentration rate of soil particles of yellow sand was increased 2.3 times that of nonyellow sand.

A study on possibility of application of non-cement Hwang-to binder for Environment-friendly (친환경 무시멘트 황토결합재의 적용가능성에 관한 연구)

  • Hwang, Hey Zoo;Kang, Nam Yi
    • KIEAE Journal
    • /
    • v.8 no.1
    • /
    • pp.81-86
    • /
    • 2008
  • Due to the recent environmental problems, lots of studies on the solutions to reduce the environmental pollutions are on the way. In the field of construction, concrete that we are currently consuming approximately 1 ton each year is the most common and cheap building material. We must cut down on this preoccupied use of this material and develop an alternative material as recommended by the late environmental standards. In this regard, this study propose the 'yellow soil' as the main substance that composes the final state, 'yellow soil concrete'. This study also aims to analyze the physical and chemical performances of this concrete mixed with the yellow soil by comparing it with the cement and assesses the possibility of its application to the cement. The results of the experiment shows that, assuming the solidity of the cement concrete to be around $210kg/cm^2$ (20.58MPa), the solidity of the yellow soil combined material may be around 45%~55% in terms of the range of W/B use, 200 to 400 in the per unit fission amount and less than 2% in the addition proportion of admixing agents. But the scope of the optimal concoction amount of the yellow soil concrete should better be limited as following. 40% to 50% in W/B, 300 to 400 in the per unit fission amount and less than 2% in the addition of admixing agents.