• Title/Summary/Keyword: yellow cotyledon

Search Result 25, Processing Time 0.031 seconds

Variation of Anthocyanins and Isoflavones between Yellow-Cotyledon and Green-Cotyledon Seeds of Black Soybean

  • Kim, Sun-Lim;Kim, Hyun-Bok;Chi, Hee-Youn;Park, Nam-Kyu;Son, Jong-Rok;Yun, Hong-Tae;Kim, Si-Ju
    • Food Science and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.778-782
    • /
    • 2005
  • Analysis of black soybeans [Glycine max (L.) Merr.; 59 Korean varieties] revealed that 100-seed weights of green cotyledon seeds (33.5 g, n=31) were higher than those of yellow ones (28.9 g, n=28). Contents of delphinidin-3-glucoside (D3G), cyanidin-3-glucoside (C3G), petunidin-3-glucoside (P3G), and total anthocyanins in seed coats of black soybeans were 0.03-4.15, 0.74-18.36, 0.02-1.60, and 0.87-23.52 mg/g, respectively, among which most prominent anthocyanin was C3G (80.9% of total content), followed by D3G (13.6%) and P3G (5.5%). No significant differences were observed in color parameters $a^*$ and $b^*$ between black soybeans with yellow cotyledon (BYC) and green cotyledon (BGC). Total isoflavone content of BGC was higher than that of BYC, and negative correlation was found between total anthocyanin and isoflavone contents.

Histological Characteristics of Somatic Embryos in Melon (Cucumis melo L.) (멜론 체세포배의 조직학적 특징)

  • Choi, Pil Son;Kwon, Suk Yoon
    • Korean Journal of Plant Resources
    • /
    • v.26 no.4
    • /
    • pp.511-515
    • /
    • 2013
  • Hypocotyls explants of melon seedling were cultured on Murashige and Skoog's (MS) medium supplemented with 1 mg/L 2,4-dichlorophenoxy acetic acid (2,4-D) and 0.5 mg/L benzyl aminopurine (BA) for 6 weeks to produce somatic embryos. In somatic embryos produced through intervening bright yellow friable (BYF) from the explants, somatic embryos with two-cotyledon (26%) and horn-type cotyledon (74%) were observed. The procambial strand of cotyledons was originated from circular procambial tissues of lower hypocotyls. The circular procambial independently divided into two procambial strand at the edge of cotyledonary-node, and then connected to each cotyledon to form somatic embryos with two-cotyledon. When cotyledon was horn-type, the circular procambial strand in lower hypocotyls would continuously remain connected to the cotyledon. However, somatic embryos with two or horn type cotyledon formed an abnormal shoot apex without the tunica-corpus structure or dome shape in the inter-cotyledonary area. These results demonstrated that the variation of cotyledon in somatic embryos was closely related to procambial tissue differentiation and shoot apical formation.

Water Uptake, Cotyledon Damage after Imbibition and Hypocotyl Elongation in Soybean with Different Seed Size and Color (콩 종실크기 및 종피색에 따른 침종후 수분흡수특성, 자엽손상 및 배축 신장력의 차이)

  • Park, Keum-Yong;Kim, Seok-Dong;Ryu, Yong-Hwan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.39 no.4
    • /
    • pp.331-338
    • /
    • 1994
  • The experiment was conducted to determine if seed size and seed coat color of soybean might be effective in water uptake and cotyledon damage after imbibition, and hypocotyl elongation. Eight soybean cultivars were separated into two classes of large and small seed based on seed weight, and each class included two cultivars with yellow and black seed color, respectively. Small seed size group was superior in water uptake by seed for 24 hour in imbibition at $25^{\circ}C$ , but its differences decreased as soaking time increased. Small seed cultivars germinated faster and had better germination rate than large ones. However, cultivars with black seed coat showed more slow water uptake at initial time and faster germination than yellow seed, but in 24 hour after imbibition, cultivars with black seed coat had higher water uptake rate than yellow seeds. Small seed cultivar group showed no cotyledon damage in imbibition for 24 hour while large seed cultivars were damaged 78% of cotyledon, and black seed showed low cotyledon damage compared to yellow seed. Hypocotyl length was shorter in large seed rather than in small seed, but hypocotyl thickness in large seed was more thick than in small seed. In correlation coefficients, seed coat rate, embryo rate exhibited significantly negative association with seed weight, and the correlation of seed weight with water uptake in 3 hour after soaking was significantly negative, but in 24 hour showed positive correlation.

  • PDF

Elucidation of Cause of Cotyledon Black-Decay of Soybean Sprout by Bean Bug, Riptortus clavatus

  • Lee, Jung-Han;Han, Ki-Soo;Kim, Dong-Kil;Kang, Jin-Ho;Kim, Hee-Kyu
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.53 no.3
    • /
    • pp.303-307
    • /
    • 2008
  • Cotyledon Black Decay (CBD) on soybean sprout mimics the black spot due to microbial infection. CBD, not visible or predictable at seedlot state, for some reason, shows up exclusively on cotyledon of soybean sprout during sprouting process. Such an incidence rate fluctuated from 0.8 to 19.5% over three years from 2004. We suspected some pod-infecting anthracnose fungi and/or pod-blight pathogen, or pod-sucking bean bug, one of the major pests of soybean, might have involved, of which we ruled out fungal pathogen because it was preventable through heat treatment, a proven method for seedlot disinfestation. The healthy seeds artificially fed by bean bug for one to seven days were sprouted, and 6 to 41% of the soybean sprout revealed the CBD mimic to those occurred in soybean sprout from previous commercial seedlot screening experiments. This finding is the first report to confirm that bean bug damage to pod at $R_8$ stage is directly responsible for the CBD, which did not concur with any other deleterious effects on sprouting such as reduction in hypocotyls elongation and rooting except unsightly sprout quality. However, earlier feeding either at green pod or greenish yellow pod stage ($R_6$ -early $R_7$ stage) resulted in rather severe damages, which strikingly reduced hypocotyls growth to about one forth to about two third, as well as the reduction in rates of seed germination.

Introduction of Stay Green Mutant for the Development of Black Seed Coat and Green Cotyledon Soybean Variety (녹색자엽 검정콩 품종 육성을 위한 Stay green 변이체 활용)

  • Kang, Sung-Taeg;Seo, Min-Jung;Moon, Jung-Kyeong;Yun, Hong-Tae;Lee, Young-Ho;Kim, Si-Ju;Hwang, Young-Sun;Lee, Suk-Ki;Choung, Myoung-Gun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.55 no.3
    • /
    • pp.187-194
    • /
    • 2010
  • The soybean stay green mutant genotype (SSG) derived from the nuclear gene, d1d2, and cytoplasmic gene, cytG, inhibit the breakdown of chloroplast in the leaves, pod walls, seed coats, and embryos during maturity. Soybean seed with black seed coat and green cotyledon (SBG) are preferred than black seed coat with yellow cotyledon (SBY) especially for cooking with rice and as source of traditional food in Korea. The researchers evaluated the seed's chlorophyll content of SSG and introduced SSG to the SBG variety breeding program. The seed chlorophyll content of SSG with d1d2 was $39.93{\sim}60.80\;{\mu}g/g$ and SSG with cytG $38.08{\sim}39.89\;{\mu}g/g$. The Korean SBG variety which was derived from SSG with cytG, contains $16.35{\sim}37.73\;{\mu}g/g$. The composition of seed chlorophyll differs according to the genetic background of SSG genotype. Inheritance study showed that cotyledon color was segregated 15:1 (yellow:green) at $F_2$ seed indicating two recessive genes control green cotyledon as revealed by previous study. Only less than 3% soybean lines showed black seed coat with green cotyledon among crosses SBY and SSG (d1d2). Results showed that SSG with d1d2 can be used as a good source for SBG with high chlorophyll content in the seed cotyledon, but due to the complex genetic behavior, breeding resource of SBG with d1d2 should be prepared to improve the breeding efficiency for development SBG variety.

Black Rot of Broccoli Caused by Xanthomonas campestris pv. campestris (Xanthomonas campestris pv. campestris에 의한 브로콜리의 검은썩음병)

  • Lee Seung-Don;Lee Jung-Hee;Kim Sun-Yee;Kim Yong-Ki;Lee Yong-Hoon;Heu Sung-Gi;Ra Dong-Soo
    • Research in Plant Disease
    • /
    • v.12 no.2
    • /
    • pp.134-138
    • /
    • 2006
  • A new bacterial disease of broccoli (Brassica oleracea var. italica) was observed on field-grown plants in Pyungchang during 2003 and 2004. Seedling infections first appeared as a blackening along the margins of the cotyledon. Cotyledon shriveled and dropped off. Infected seedlings were stunted and yellowed and eventually died. The disease was easily recognized by the presence of yellow, V-shaped, or U-shaped areas extending inward from margin of the leaf. As the disease progressed, the yellow lesions turned brown and the tissues died. Isolations made from diseased leaves on yeast extract dextrose calcium carbonate agar yielded nearly pure cultures of a yellow-pigmented bacterium typical of a xanthomonad. Two bacterial strains were purified and used for further tests. Pathogenicity of strains was confirmed on 3-week-old crucifer (cabbage, Chinese cabbage, kale, radish and broccoli) plants cut by scissors with bacterial suspensions containing $10^8 cfu/ml$ of phosphate buffered saline. The Biolog and fatty acid analyses and 16S rDNA sequencing of two strains (SL4797 and SL4800) from broccoli black rot showed that they could be identified as X. campestris pv. campestris because of their high similarity to the tester strain (X. campestris pv. campestris NCPPB528) with a match probability of 100%. This is the first report of black rot of broccoli in Korea.

Effects of Growth Regulators on Plant Regeneration from the Cotyledon Explant in Oriental Melon (Cucumis melo L.) (참외 (Cucumis melo L.)자엽절편으로부터 식물체 재분화에 미치는 생장조절물질의 영향)

  • 문정길;추병길;두홍수;권태호;양문식;류점호
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.1
    • /
    • pp.1-6
    • /
    • 2000
  • This study was carried out to find the effects of plant growth regulators on callus formation, rooting and shooting from cotyledon explant in oriental me]on. Various combinations of 0.1 mg/L auxins (IAA, NAA) and 0.5, 1.0. 1.5, 2.0 mg/L cytokinins (BA, kinetin, zeatin) were treated to the MS basal medium, respectively. Callus was induced mort effectively as 2,437.0 mg (FW)/explant in MS medium supplemented with 0.1 mg/L NAA and 2.0 mg/L BA, but that was non-embryogenic callus as colored yellow white and broke easily. Root was induced most effectively at a frequency of 98.0% in MS medium supplemented with 0.1 mg/L NAA and 0-5 mg/L kinetin. Shoots formed on cut part of vein at a frequency of 98.0% in MS medium supplemented with 0.1 mg/L IAA and 2.0 mg/L BA, that were multiple shoots. in case of its concentration, BA and lower concentration of IAA and NAA (0.01 and 0.05 mg/L). respectively. shooting ratio was not increased. The result of treatment with BA 0-5 mg/L and IAA 0.1 mg/L, callus induced at a week, and shoot start to form multiple shoots about 3 weeks after inoculation. After 2 times subculture as 2 weeks intervals, divided shoots rooted and developed into intact plantlets at 10 weeks and then that grown normally on pots after acclimatization.

  • PDF

Comparison of Soyasapogenol A, B Concentrations in Soybean Seeds and Sprouts

  • Kang, Eun-Young;Kim, Seung-Hyun;Kim, Sun-Lim;Seo, Su-Hyun;Kim, Eun-Hye;Song, Hong-Keun;Ahn, Joung-Kuk;Chung, Ill-Min
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.55 no.2
    • /
    • pp.165-176
    • /
    • 2010
  • Soybean seeds contain many biologically active secondary metabolites, such as proteins, saponins, isoflavones, phytic acids, trypsin inhibitors and phytosterols. Among them, saponins in soybeans have attracted considerable interest because of their health benefits. Soyasaponin A and B are the most abundant types of saponins found in soybeans along with soyasapogenol (aglycone), which is a precursor of soyasaponin. The main purpose of this experiment was to determine the concentration of soyasapogenol in soybean seeds and sprouts as a function of seed size, usage, seed coat color and seed cotyledon color. The 79 Korean soybean varieties were cultivated at Yesan of Chungnam in 2006 for the analysis of soyasapogenol using HPLC with Evaporative Light Scattering Detection (ELSD). The total average concentration of soyasapogenol was $1313.52{\mu}g\;g^{-1}$ in soybean seeds and $1377.22{\mu}g\;g^{-1}$ in soybean sprouts. Soybean sprouts were about 5% higher than soybean seeds in average total soyasapogenol concentration. In the process of sprouting, the average soyasapogenol A content decreased by approximately 1.6%, but soyasapogenol B and total soyasapogenol increased by 8.31% and 4.88%, based on the content of soybean seeds. When classified according to the size of seeds, the total soyasapogenol concentration of soybean seeds were not significantly different (p<0.05) On average, small soybean seeds were increased by as much as $103.14{\mu}g\;g^{-1}$ in sprouting process. As a function of the use of the seeds, The total soyasapogenol in soybean seeds were significantly different (p<0.05). While, the soybean sprouts were not significant different (p<0.05). Altogether, sprout soybean seeds show the greatest change in content during the germination process. When seeds with different coat colors were compared, the total soyasapogenol concentration of soybean with yellow seed coats ($1357.30\mu g\;g^{1}$) was slightly higher than that of soybean with black ($1260.30{\mu}g\;g^{-1}$) or brown ($1263.62{\mu}g\;g^{-1}$) seed coats. For the color of the cotyledon, the total soyasapogenol concentration was significantly increased in green cotyledon during the germination and seedling process. The results of this study suggest the functional characteristics of soybeans through quantitative analysis of soyasapogenol. In addition, the concentration of soyasapogenol exhibited a change during the germination process, which was evaluated by the nutritional value of the soybean sprouts.

Comparison of agronomic characteristics of colored soybean landraces and selection of useful genetic resources

  • Choi, Yu Mi;Hyun, Do-Yoon;Lee, Sukyeung;Yoon, Hyemyeong;Lee, Myung-Chul;Oh, Sejong;Ko, Ho-Cheol;Rho, Nayoung;Hur, On-Sook
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.04a
    • /
    • pp.41-41
    • /
    • 2019
  • This study was conducted to compare the agronomic traits of well-known colored native soybean germplasms. Recently, we are increasingly interested in colored as various functional ingredient of soybeans have revealed. We used a total of 396 soybean genetic resources, consisting of ten "Seonbijabikong", 110 "Jyinunikong", 276 "Seoritaekong". We sowed on 10th June 2018 at the field of Nongsaensmyeongro in Jeonju city. The average number of days to flowering, days to maturing and days to growth of colored soybean were 53, 84 and 136 days, respectively. Days to flowering of "Seonbijabikong" were ranged from 41 to 50 days with an average 48 days, those of "Jyinunikong" were ranged from 39 to 72 days with an average 52 days. Days to flowering of "Seoritaekong" were ranged from 35 to 63 days with an average 54 days, which were earlier in "Seonbijabikong", and similar with "Seoritaekong" and "Jyinunikong". Days to growth of "Seonbijabikong" were ranged from 125 to 137 days with an average 132 days, those of "Jyinunikong" were ranged from 91 to 144 days with an average 130 days and those of "Seoritaekong" were ranged from 99 to 150 days with an average 139 days. they were shortest in "Jyinunikong" and longest in "Seoritaekong". The distribution of maturity period was from 6th September to 5th November. The maturity period was as early as September and yields were more than 100g per plant, which were all three accessions(IT161905, IT162602, IT269617), "Seoritaekong". They would be useful as breeding materials of colored soybean with early maturity. The 100-seed weight is important characteristics that distinguish the usage of soybeans. "Seoritaekong" and "Seonbijabikong" have large seed characteristics for cooking with rice, "Jyinunikong" has small seed it for medicine. The average 100 seed weight was 35.0g of "Seonbijabikong", 30.8g of "Seoritaekong" and 13.4g of "Jyinunikong", respectively. As for seed coat lust, the ratio of dull was as high as 100% of "Seonbijabikong" and 91% of "Seoritaekong", that of shiny was as high as 77% of "Jyinunikong". Cotyledon color of "Seonbijabikong" were all yellow, that of "Seoritaekong" were 94% of green. The other name of "Seoritaekong" is "Sokcheong", which means that cotyledon color is green. Therefore if cotyledon color of Seoritaekong is not green, it might be misidentified. In the future, we will increase the utilization through evaluation of functional component such as isoflavones and anthocyanins of colored soybean landraces.

  • PDF

Variation of Anthocyanin and Protein Contents in Glycine max L. (Merr) (Soybean) Germplasms from Korea

  • Choi, Yu Mi;Lee, Sukyeung;Hyun, Do-Yoon;Ko, Ho-Cheol;Rho, Nayoung;Hur, On-Sook;Yoon, Hyemyeong;Lee, Myung-Chul;Oh, Sejong;Shin, Myoung-Jae;DESTA, Kebede Taye
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.10a
    • /
    • pp.13-13
    • /
    • 2019
  • Soybean (Glycine max L. (Merr) is commonly consumed and found in major foods including soymilk, soy sauce, tofu, and soy sprout in Korea and east Asia. In addition, it is common to cook the whole seeds with rice. Soybean is known to have ranges of health benefits including antiaging, anticancer, neuroprotective and antidiabetic taken either as supplement or dietary food. Anthocyanins and flavonoids in G. max are found to be the main contributors to such wide arrays of health benefits. Due to increasing economic values of soybean, development of specialty soybean cultivars is becoming an area of interest worldwide. In this study, 746 black soybean accessions from National Agrobiodiversity Center were characterized as part of an attempt to identify important germplasms of G. max. Seed coats of each accession were analyzed for their total anthocyanin, cyanidin 3-O-Glucoside (C-3-O-G), delphinidin 3-O-glucoside (D-3-O-G), petunidin-3-O-glucoside (Pt-3-O-G), and their whole seeds for crude protein contents. HPLC was used to determine and quantify the anthocyanin compositions while crude protein was determined using Kjeldahl method by Kjeltec auto-analyzer (Kjeltec 8400, Foss, Sweden). Accessions were grouped according to their anthocyanins and protein contents; the mean content of which were correlated to agronomic traits including maturity date, one hundred seed weight, cotyledon color and seed lust color. The results indicated that the total anthocyanin content (TAC) ranged from 273.77 to 6250.52 mg/100 g, with mean value of 1853.03 mg/100 g while the crude protein content (CPC) being between 33.43 and 47.51%, with mean value of 40.81%. The highest number of accessions (45.97%) showed TAC between 1000~1900 mg/100 g while 30.96% of accessions showed CPC between 41~43%. Among the 746 accessions considered, 11 (IT142935, 175818, 175855, 177191, 177209, 177211, 177214, 177216, 177218, 177220, 177274) of them showed TAC above 4000 mg/100 g. C-3-O-G was found to be the major contributor to TAC showing strong correlation. Accessions with green cotyledon color showed high mean TAC compared to those having yellow cotyledon color, and accessions with dull seed lust color showed high mean TAC than those having shiny seed lust color. One hundred seeds weight and maturity date showed positive correlation with all anthocyanin contents, except for Pt-3-O-G in the latter case. The overall result of the present study could be used as background for developing new black soybean cultivars and breeds with high anthocyanin and protein contents. The result depicted that many of the accessions could be used as potential parental lines.

  • PDF