• Title/Summary/Keyword: yellow clay

Search Result 116, Processing Time 0.025 seconds

Major Elemental Compositions of Korean and Chinese River Sediments: Potential Tracers for the Discrimination of Sediment Provenance in the Yellow Sea (한국과 중국의 강 퇴적물의 주성분 원소 함량 특성: 황해 니질 퇴적물의 기원지 연구를 위한 잠재적 추적자)

  • Lim, Dhong-Il;Shin, In-Hyun;Jung, Hoi-Soo
    • Journal of the Korean earth science society
    • /
    • v.28 no.3
    • /
    • pp.311-323
    • /
    • 2007
  • The Yellow and East China seas received a vast amount of sediment $(>10^9ton/yr)$, which comes mainly from the Changjiang and Huanghe rivers of China and the Korean rivers. However, there are still no direct sedimentological-geochemical indicators, which can distinguish these two end-members (Korean and Chinese river sources) in these seas. The purpose of this study is to provide the potential geochemical-tracers enabling these river materials to be identified within the sediment load of the Yellow and East China seas. The compositions of major elements (Al, Fe, Mg, K, Ca, Na, and Ti) of Chinese and Korean river sediments were analyzed. To minimize the grain-size effect, furthermore, bulk sediments were separated into two groups, silt $(60-20{\mu}m)$ and clay $(<20{\mu}m)$ fractions, and samples of each fraction were analyzed for major and strontium isotope $(^{87}Sr/^{86}Sr)$ compositions. In this study, Fe/Al and Mg/Al ratios in bulk sediment samples, using a new Al-normalization procedure, are suggested as an excellent tool for distinguishing the source of sediments in the Yellow and East China seas. This result is clearly supported by the concentrations of these elements in silt and clay fraction samples. In silt fraction samples, Korean river sediments have much higher $^{87}Sr/^{86}Sr$ ratio $(0.7229{\sim}0.7253)$ than Chinese river sediments $(0.7169{\sim}0.7189)$, which suggests the distribution pattern of $^{87}Sr/^{86}Sr$ ratios as a new tracer to discriminate the provenance of shelf sediments in the Yellow and East China seas. On the basis of these geochemical tracers, clay fractions of southeastern Yellow Sea mud (SEYSM) patch may be a mixture of two sediments originated from Korea and China. In contrast, the geochemical compositions of silt fractions are very close to that of Korea river sediments, which indicates that the silty sediments of SEYSM are mainly originated from Korean rivers.

Short -term changes of microbial communities after control of Cochlodinium polykrikoides by yellow clay and chemical compound dosing in microcosm experiments (황토와 화학물질 살포에 의한 적조생물Cochlodinium polykrikoides 제어에 따른 미소생물그룹의 단주기변화)

  • Baek, Seung Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2971-2977
    • /
    • 2015
  • This study aimed to understand the changes in microbial community after algicide dosing to control the fish-killing dinoflagellate Cochlodinium polykrikoides in 10L microcosm. Based on our microcosm experiments, the algicidal activity for C. polykrikoides of yellow clay at the concentrations of 4g and 10g per 10 L was < 20%. At $0.8{\mu}M$ concentration of thiazolidinedione(TD49), the population of C. polykrikoides was controlled to be > 85%. In microbial community, a significant increase in heterotrophic bacterial (HB) abundance was observed at day 1 in the TD49 and yellow clay treatments including control. The HB remained high for 2 days and then gradually decreased. In contrast, the abundance of heterotrophic nanoflagellates (HNFs) increased significantly on days 3 and 5 in the TD49 treatments, indicating that the decline in HB was probably a result of predation by the high density of HNFs. In addition, fluctuations in the aloricate ciliate Uronema sp., which feed on bacteria, was clearly correlated with fluctuations in HB abundance, with a lag period of 1-3 days. Therefore, the short-term responses of the HNF and Uronema sp. may have been a result of the rapidly increasing of HB abundance, which is related to degradation of the dense C. polykrikoides bloom, particularly in the TD49 treatment. In addition, large aloricate ciliate Euplotes sp. was significantly increased after reproduction of HNFs and Uronema sp. Consequently, the algicide TD49 had positive effect on the microbial communities, which indicates that the microbial loop was temporarily enhanced in the microcosm by energy flow from HB through HNFs to ciliate.

Mineralogical Characteristics and Origins of Smectite in the Marine Sediment around South Shetland Islands, Antarctica (남극 사우스셰틀란드 해양퇴적물내 스멕타이트의 광물학적 특성과 기원)

  • 정기영;윤호일
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.22-32
    • /
    • 2002
  • Mineral composition and chemistry of the clay minerals in the three cores from the continental shelves of South Shetland Islands (NCS09) and Anberse Island (GC98-2), and from the fjord of King George Island (A10-01) were determined by X-ray diffraction and electron microprobe analysis in search of the distributions and origin of the clay minerals in the Antarctic marine sediments. Smectite content is relatively high in NCS09 regardless of core depths (av. 8.3%), but low in GC98-2 (1.1%). In Al0-01, smectite content is higher in the upper section than in the lower section. Kaolinite was not detected from all the cores in this study Yellow to yellowish green clay granules were commonly scattered in the sediments of NCS09 cores. The clays contain 16.97% and 2.53% $Fe_2$$O_3$$K_2$O. Average structural formula of the clay indicates ferrian beidellite . The (Fe, K)-rich smectite of NSC09 must have been derived from relatively young basaltic volcanics altered by reaction with seawater near Shetland Islands by glacial erosion or eolian process related to volcanic eruption. GC98-2 nearer to Antarctic continent is very low in smectite content. In A10-01, the lower diamicton was deposited from the glacial erosion of smectite-free ancient volcanics in the interior of King George Island, while the upper section was derived from the smectite-bearing terrestrial debris and eolian materials after retreat of glaciers in Marian Cove and ice cover in Barton Peninsula. Thehigh K contents of smectites suggest the interstratification of illite and smectite layers, which might be observed by future TEM lattice fringe imaging.

Refinement of Low-grade Clay using Iron-reducing Bacteria [II] : Removal Characteristics of Iron Impurity from Various Porcelain Clays (철환원세균을 이용한 저품위 점토의 개량 [II] : 도자기 점토 종류별 철불순물 제거 특성)

  • 조경숙;류희옥
    • KSBB Journal
    • /
    • v.15 no.2
    • /
    • pp.208-213
    • /
    • 2000
  • Using three types of porcelain clays such as White, Blue, and Yellow clays, which were used as raw materials for Bae씨a, C Chungja, and common porcelains, the biological refinement by an enrichment culture of iron reducing bacteria was studied. | In the biological clay refining, amounts of leached iron increased as increasing sucrose $\infty$ncentration, which was s supplemented as a carbon and electron donor source for cell growth and iron reduction. Total amounts of the leached iron a and specific rate of iron reduction were dependent on the types of the clay. Strength and chromaticity of refined clays which a are important properties required for porcelain clays were improved as increasing sucrose concentration. The degree of s shrinking, however, did not changed. the redness among the chromaticity of refined clays is favorably reduced through the r ripening by the iron reducing bacteria. Considering iron removal efficiency and the change of physical properties, the optimal c concentration of sucrose was 4%(w/w) in the clay.

  • PDF

Pruification of Yellow Color from Gardenia(Gardenin jasminoides Ellis) for Development of Natural Food Color (천연식용색소 개발을 위한 치자 황색색소의 정제도)

  • 김희구;이상준
    • The Korean Journal of Food And Nutrition
    • /
    • v.11 no.1
    • /
    • pp.68-71
    • /
    • 1998
  • In order make natural food color from gardenia(Gardenia jasminoides), we investigated optimal conditions of color extraction, in case of water extraction, optimal conditions for color extraction were 7$0^{\circ}C$, 48hrs, pH 7.0 and substrate 10%, respectively. And extracted crude color was purified by activated white clay, were isolated glycoside peak (238nm) and yellow color peak(40nm) from extracted crude color. The pruified color was increased by 27-fold and the yield was 96%.

  • PDF

Potassium and Clay Minerals in Upland Soils (밭 토양(土壤)의 점토(粘土) 광물(鑛物)과 가리(加里))

  • Kim, Tai-Soon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.10 no.3
    • /
    • pp.135-151
    • /
    • 1977
  • The present paper summerizes the studies on clay mineralogical characteristics of Korean soil, relationship between potassium and clay minerals, potassium release pattern of clay minerals and utilization of clay minerals for soil conditioner and fertilizers, which have been carried out in this laboratory. 1. The red yellow podzolic soil is mostly abundant in the upland of Korea and mainly consists of halloysite and weathered intermediates of mica such as illite and vermiculite. 2. With regard to soil parent material, kaolin mineral occurs abundant in soils derived from granite and granite gneiss. Mica is dominant in basaltic soil. The main clay mineral of the soil, originated from the Tertiary, is found montmorillonite and the volcanic soil of Jeju Island has plenty of allophane as its main clay mineral. 3. It is confirmed that the soil fertility depends on the composition of clay minerals. The red yellow podzolic soil, containing lot of kaolin, shows low productivity while the montmorillonite soil has higher productivity. 4. The release rate of solid phase potassium (micas and fixed potassium) follows the 1st order reaction equation in the equilibrium solution of $IN-NH_4OAc$. The potassium release constant is positively correlated with the mica content of the clay but negatively correlated with the content of $14.5{\AA}$ minerals. On the other hand, the potassium release constant has very high correlation with the ratio(Kex/Kt) of exchangeable potassium(Kex) to total potassium(Kt). 5. It is also found that Kex/Kt has rather high correlation with the content of mica and $14.5{\AA}$ minerals existed in the clay as well as the mica content of the soil.

  • PDF

Consolidation deformation of Baghmisheh marls of Tabriz, Iran

  • Jalali-Milani, Shahrokh;Asghari-Kaljahi, Ebrahim;Barzegari, Ghodrat;Hajialilue-Bonab, Masoud
    • Geomechanics and Engineering
    • /
    • v.12 no.4
    • /
    • pp.561-577
    • /
    • 2017
  • Vast parts of the east of Tabriz city have been covered by Baghmisheh formation marls. These marls can be classified into three types based on their color as identified in yellow, green, and gray marls. Many high-rise buildings and other projects were founded and now is constructing on these marls. Baghmisheh formation marls are classified as stiff soil to very weak rock, therefore they undergo considerable consolidation settlement under foundation loads. This study presents the physical properties and consolidation behavior of these marls. According to the XRD tests, major clay minerals of marls are Illite, Kaolinite, Montmorillonite and Chloride. Uniaxial compressive strength are 100-250, 300-480 and 500-560 kPa for yellow, green and gray marls, respectively. Consolidation and creep behavior of Baghmisheh marls investigated by using of one dimensional consolidation apparatus under stress level up to 5 MPa. The results indicate that yellow marls have high compressibility, settlement and deformation modules. Green marls have an intermediate compressibility and settlement and while gray marls have low compressibility and settlement and from the foundation point of view have high stability. According to the creep test results, all types of marls have not been entered to progressive creep phase up to pressure 5 MPa.

A Scientific Analysis of Dancheong Pigments at Yaksajeon Hall in Gwallyoungsa Temple (창녕 관룡사 약사전 단청안료의 과학적 분석)

  • Han, Min-su;Kim, Jin-hyoung;Lee, Jang-jon
    • Korean Journal of Heritage: History & Science
    • /
    • v.47 no.1
    • /
    • pp.18-31
    • /
    • 2014
  • This study aims at identifying of characteristics and types of the pigments used for Dancheong(surface decorative and protective pigments) of Yaksajeon Hall in Gwallyoungsa Temple using a Micro-XRF, XRD, SEM-EDS and thereafter, comparing it with the pigments of the wall painting in the same building and with Dancheong pigments of Daeungjeon Hall. The results can be briefly summarized as two points. First, different types of pigments for red, green and white colours had been applied based on different parts of the building and more than two different pigments had been mixed to produce various colours in so me parts. Second, scientific analysis has confirmed that raw minerals for each colour groups are: Cinnabar, minium and Hematite for red; white clay and oyster shell white($Al_2O_3{\cdot}SiO_2{\cdot}4H_2O$) for white; Atacamite and Celadonite for green; carbon(C) for black; Yellow Ocher for yellow; and Lazulite for blue. Comparative analysis of such result with that of the wall paintings and of Dancheong of Daeungjeon Hall has revealed that similar minerals had been used in overall except that several different pigments had been added or removed for making green, white and yellow colour groups in some parts. In conclusion, the result has displayed that painters had used different ways of producing pigments by a type of painting or a building within the same period or for the buildings in the same buddhist temple compound.

A Study on the Making Properties of Natural Pigments based on Substance Characteristics for Hwangto in Korea (국내 산출되는 황토의 특징에 따른 천연(제조)안료 특성연구)

  • Mun, Seong Woo;Kang, Yeong Seok;Park, Ju Hyun;Han, Min Su;Jeong, Hye Young
    • Journal of Conservation Science
    • /
    • v.35 no.6
    • /
    • pp.600-611
    • /
    • 2019
  • Yellow to reddish brown soil is generally referred to as hwangto and is used in various industries in Korea. Despite the fact that it is used as an inorganic pigment in dancheong, limited studies have been conducted on the properties of pigments associated with soil and on the mineralogical characteristics of hwangto. This study examines how the pedological and mineralogical features of hwangto affect pigment properties. Results indicate that reddish and yellowish soils have differences in terms of soil texture, mineral composition, oil absorption and stability under light. Reddish soil is mostly found in clay regions, whereas Ulleungdo hwangto is found in loam regions. Yellowish soil is mostly present in the clay loam to loam zones. whereas Haenam hwangto exists in the sandy clay loam zone. As a result of a mineralogical analysis, reddish soil is classified into the feldspar group and clay soil. The major minerals in the yellowish soils are similar however these soils differ in terms of clay mineral compositions. results of the characteristics of pigments prepared by the traditional method revealed that the average particle size is in the range of 10-20 ㎛, reddish soil has an average of 20 ml/100 g higher oil absorption than yellowish soil. In addition, reddish soil is more susceptible to discoloration and deterioration under light than yellowish soil. This study confirms that the soil and mineral characteristics of hwangto affect the physical properties and stability of produced pigments. These result can be used as basic data in future studies natural inorganic pigments using hwangto.

Soil Characteristics and Improvement of Reclaimable Hillside Land (산지토양(山地土壤)의 특성(特性)과 개량(改良))

  • Ryu, In-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.11 no.4
    • /
    • pp.247-262
    • /
    • 1979
  • Majority of reclaimable soils in hillside lands in Korea are red yellow soils, with exception in Jeju island, where most of reclaimable hillside lands are composed of volcanic ash soils. Songjeong, Yesan and Samgag series are the major soil series of red yellow soils which are available for the reclamation. When observed in the fields, they are distinguished as reddish brown clay loam, red yellow sand loam and yellowish brown sand loam. They have moderately good physical properties but their chemical properties are generally poor for crop cultivations. The chemical properties of red yellow soils, as compared to long time cultivated (matured) soils, are characterized by very low pH, high in exchangeable Al content and phosphorus fixation capacity. Also extraodinary low available phosphorus and organic matter contents are generally observed. On the other, the chemical properties of volcanic ash soils are characterized by high armophous Fe and Al hydroxides and organic matter contents, which are the causative factors for the extremely high phosphorus fixation capacity of the soils. The phosphorus fixation capacity of volcanic acid soils are as high as 5-10 times of that of red yellow soils. Poor growth of crops on newly reclaimed red yellow soils are mainly caused by very low available P and pH and high exchangeable Al. Relatively high P fixation capacity renders the failure of effective use of applied P when the amount of application is not sufficient. Applications of lime to remove the exchangeable Al and relatively large quantity of P to lower the P fixation capacity and to increase the available P are the major recommendations for the increased crop production on red yellow hillside soils. Generally recommendable amounts of lime and P to meet the aforementioned requirements, are 200-250kg/10a of lime and $30-35kg\;P_2O_5/10a$. Over doses of lime. frequently induces the K, B, arid Zn deficiencies and lowers the uptake of P. In volcanic ash soils, it is difficult to alter the exchangeable Al and the P fixation capacity by liming and P application. This may be due to the peculiarity of volcanic ash soil in chemical properties. Because of this feature, the amelioration of volcanic ash soils is not as easy as in the case of red yellow soils. Application of P as high as $100kg\;P_2O_5/10a$ is needed to bring forth the significant yield response in barley. Combined applications of appropriate levels of P, lime, and organic matter, accompanied by deep plowing, results in around doubling of the yields of various crops on newly reclaimed red yellow soils.

  • PDF