Refinement of Low-grade Clay using Iron-reducing Bacteria [II] : Removal Characteristics of Iron Impurity from Various Porcelain Clays

철환원세균을 이용한 저품위 점토의 개량 [II] : 도자기 점토 종류별 철불순물 제거 특성

  • 조경숙 (이화여자대학교 환경학과) ;
  • 류희옥 (숭실대학교 환경·화학공학과)
  • Published : 2000.04.01

Abstract

Using three types of porcelain clays such as White, Blue, and Yellow clays, which were used as raw materials for Bae씨a, C Chungja, and common porcelains, the biological refinement by an enrichment culture of iron reducing bacteria was studied. | In the biological clay refining, amounts of leached iron increased as increasing sucrose $\infty$ncentration, which was s supplemented as a carbon and electron donor source for cell growth and iron reduction. Total amounts of the leached iron a and specific rate of iron reduction were dependent on the types of the clay. Strength and chromaticity of refined clays which a are important properties required for porcelain clays were improved as increasing sucrose concentration. The degree of s shrinking, however, did not changed. the redness among the chromaticity of refined clays is favorably reduced through the r ripening by the iron reducing bacteria. Considering iron removal efficiency and the change of physical properties, the optimal c concentration of sucrose was 4%(w/w) in the clay.

백자, 청자 및 일반 자기 제조용 점토인 3종류의 점토(백토, 청토, 황토)를 철환원 미생물을 이용한 숙성과정을 통해 점토의 개질을 수행하였다. 철환원 미생물을 이용한 숙성기간 동안 점토 종류에 따른 철환원 및 용출특성과 숙성된 점토들의 물성 변화를 조사하였다. 숙성기간동안 점토의 철용출량은 점토의 종류에 관계없이 탄소원인 sucrose의 첨가량이 증가할수록 증가하였지만, 총 철용출량과 용출속도는 점토의 종류에 의존하였다. 숙성점토는 원료물질과 비교하여 sucrose 의 첨가량이 증가함에 따라 수축을 변화없이 강도와 색도가 향상되었다. 점토의 색도는 점토의 종류에 많은 영향을 받았으며, 점토의 숙성과정은 색도 중 적색도가 가장 많이 감소하는 효과를 제공하였다. 숙성점토의 물리적 특성과 탈철양을 고려할 때, 점토 중에 함유된 철환원을 전자공여체로 제공되는 sucrose의 최적 첨가량은 4wt% 임을 확인하였다.

Keywords

References

  1. Ann. Rev. Microbiol. v.48 Iron and manganese in anaerobic repiration Envronmental sugnificance, physiology, and regulation Nealson, K. H.;D. Saffarini
  2. Microbiol. Rev. v.55 Dissimilatory Fe(III) and Mn(IV) reduction Lovley, D. R.
  3. J. Ferm. Bioeng. v.80 Refinement of low-grade clay by microbial removal of sulfur and iron compounds using Thiobacillus ferrooxidans Ryu, H. W.;K. S. Cho;Y. K. Chang;S. D. Kim;T. Mori
  4. Appl. Environ. Microbiol. v.56 Anaerobic oxidation of toluene, phenol, and p-cresol by the dissimilatory iron-reducing organism, GS-15 Lovley, D. R.;D. J. Lonergan
  5. Chemosphere v.15 Determination of the effect of pentachlorophenol on the bioactivity of soils by the iron-reducing test Zelles L.;I. Scheunert;F. Korte
  6. J. Biosci. Bioeng. v.87 Microbial removal of Fe(III) impurities from clay using dissimilatory iron reducers Lee, E. Y.;K. S. Cho;Ryu, H. W.;Y. K. Chang
  7. Glass and Ceramics v.40 Reducing the coloring effects of iron oxidis in porcelain bodies Povlov, V. F.;V. Meshcheryakova
  8. Ziegelind Int. v.41 The influence of the mineralogical composition of structural ceramics and heavy clay materials on kiln scumming and efflorescence Ratzenberger, H
  9. Appl. Clay Sci. v.6 Influence of microstructure on firing color of clays Stepkowska, E. T.;S. A. Jefferis
  10. Standard methods of chemical analysis, (6th ed.) Furman, N. H.
  11. Appl. Environ. Microbiol. v.59 Composition of non-microbially reducible Fe(III) in aquatic sediments Phillips, E. J.;D. R. Lovley;E. E. Roden