• Title/Summary/Keyword: yeast diversity

Search Result 64, Processing Time 0.018 seconds

Overview of Autophagy in Plant Cells (식물 세포의 자식작용에 대한 개요)

  • Lee, Han Nim;Chung, Taijoon
    • Journal of Life Science
    • /
    • v.24 no.2
    • /
    • pp.209-217
    • /
    • 2014
  • In a variety of eukaryotic cells, autophagy sequesters a portion of the cytoplasm and targets it to a lytic compartment for degradation in bulk. Autophagy is a dynamic process for degrading cytoplasmic cargoes with various degrees of selectivity, and its activity is tightly regulated in a nutrient- and development-dependent manner. Autophagy research has drawn much attention since autophagy not only is an interesting cell biological phenomenon but also has great potential for medical and agricultural applications. For example, autophagy is associated with cancers and neurodegenerative diseases in human and mammalian cells and is also suggested in remobilization of nutrients during the senescence of plant leaves. In this general review, we describe genetic components of the core autophagic machinery conserved among yeast, animals, and plants and briefly explain how these components are responsible for major steps in plant autophagy. We discuss four common features of autophagic processes: (i) autophagy as a degradation pathway, (ii) the concept of flux in autophagy research, (iii) dependency on developmental and nutritional cues, and (iv) diversity of autophagy, focusing on selective types of autophagy. We also summarize cell biological and physiological functions of plant autophagy. Our intention is to provide a quick guide to autophagy for those who are new to autophagy research.

Quality Characteristics and Biogenic Amine Production of Makgeolli Brewed with Commercial Nuruks (시판 누룩으로 제조한 막걸리의 품질특성과 biogenic amine 생성)

  • Jeong, Seok-Tae;Kwak, Hee-Jung;Kim, Soon-Mi
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.727-734
    • /
    • 2013
  • Makgeolli mashes that were brewed using five different commercial nuruks (fermentation starters) were investigated for changes in physicochemistry, microbial diversity, and biogenic amine (BA) production. Mash A brewed with the nuruk (Gaeryang-nuruk) had the highest level of alcohol concentration and the greatest number of yeast cells, whereas mash E had the greatest number of bacterial cells. Only three biogenic amines were detected in the makgeolli mashes: tyramine, putrescine, and cadaverine. Using a PCR-DGGE technique, we observed that mash E had the highest BA production, and had the greatest number of bands on the denaturing gradient gels. We also observed that the numbers of bacterial cells correlated significantly with the putrescine and the total BA content, and that the BA content correlated significantly with the color values (L, a, b). This study shows that the quality of a makgeolli can depend on the type of nuruk. Therefore, we suggest that the quality management of makgeolli should start with the stage of nuruk manufacture.

Microbiological Characteristics of Gamma Irradiated and Low-Salted Fermented Squid (감마선 조사된 저염 오징어젓갈 발효의 미생물균총 특성)

  • Kim, Dong-Ho;Kim, Jae-Hun;Yook, Hong-Sun;Ahn, Hyun-Joo;Kim, Jung-Ok;Sohn, Cheon-Bae;Byun, Myung-Woo
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.1619-1627
    • /
    • 1999
  • Microbiological characteristics of gamma irradiated low salt squid Jeot-gal were examined. Following the fermentation periods, total bacterial cell, Lactobacillus spp., Staphylococcus spp., Streptococcus spp., Pseudomonas spp. and yeast cell number were counted on their selective media and some acid forming bacteria and Pseudomonas spp. were identified. As the gamma irradiation dose increased, the microbial density of early fermentation phase was reduced and the growth rate was delayed. The repression effects on microbiological growth by gamma irradiation were to be higher as salt concentration increased. Adequate conditions of salt concentration and gamma irradiation for low-salt squid Jeot-gal preparation were 10% and 10 kGy, respectively. Lactobacillus sp. 2, Micrococcus varians and Streptococcus sp. I were isolated from 5% salt containing squid Jeot-gal, and Micrococcus morrhuae was from 20% only while Lactobacillus plantarum and Lactobacillus brevis were widespread. Lactobacillus brevis, Pediococcus halophilus and Pseudomonas diminuta were sensitive and Lactobacillus plantarum, Micrococcus morrhuae and Pseudomonas sp. 3 were resistant to gamma irradiation. The diversity of microflora decreased as salt concentration decreased and gamma irradiation dose increased.

  • PDF

Microbial community analysis of an eco-friendly recirculating aquaculture system for olive flounder (Paralichthys olivaceus) using complex microbial probiotics (복합미생물 프로바이오틱을 이용한 환경친화적 넙치 순환여과양식시스템에서의 미생물군집 분석)

  • Rhee, Chaeyoung;Kim, Haham;Emmanuel, S. Aalfin;Kim, Hong-Gi;Won, Seonghun;Bae, Jinho;Bai, Sungchul C.;Koh, Sung-Cheol
    • Korean Journal of Microbiology
    • /
    • v.54 no.4
    • /
    • pp.369-378
    • /
    • 2018
  • This study was conducted to evaluate effects of dietary microbial probiotics on the growth and disease resistance of olive flounder (Paralichthys olivaceus) in a recirculating aquaculture system (RAS), and the effects of the probiotic bioaugmentation on the microbial community structure and water quality. For the analysis, 80 juvenile fish (average weight, $25.7{\pm}7.6g$; average length, $15.2{\pm}1.7cm$) were fed a basal diet containing a commercial microbial product CES-AQ1 (CES; $1{\times}10^9\;CFU/kg$ diet) in an RAS for 8 weeks. Weight gain, the specific growth rate, feed efficiency, and protein efficiency ratio of the fish fed the CES diet in the RAS were 1.5~2.5 times higher than those of fish fed the basal diet alone, or the basal diet containing oxytetracycline (OTC), yeast plus bacterium, or Bacillus subtilis in a still water system. There was no significant difference in the pathogen challenge test between fish fed the OTC diet and fish fed the CES diet in the RAS, suggesting the CES-AQ1 probiotic used in the RAS as a potential replacement for antibiotics. The RAS biofilter maintained the highest microbial diversity and appeared to harbor microbial communities with ammonium oxidation, denitrification, and fish pathogen suppression functions. Ammonia, which is hazardous to fish, was significantly decreased to < 0.5 mg/L in 19 days, indicating the effectiveness of probiotic supplementation to maintain good water quality in RAS. These results suggest that the intestinal microbial communities of fish are stabilized by a probiotic-containing diet (CES) and that bioaugmentation with probiotics may be an eco-friendly and economical supplement for aquaculture of olive flounder, promoting both good water quality and fish health in an RAS.