• 제목/요약/키워드: yawed flow

검색결과 20건 처리시간 0.023초

Aeroelastic analysis of cantilever non-symmetric FG sandwich plates under yawed supersonic flow

  • Hosseini, Mohammad;Arani, Ali Ghorbanpour;Karamizadeh, Mohammad Reza;Afshari, Hassan;Niknejad, Shahriar
    • Wind and Structures
    • /
    • 제29권6호
    • /
    • pp.457-469
    • /
    • 2019
  • In this paper, a numerical solution is presented for supersonic flutter analysis of cantilever non-symmetric functionally graded (FG) sandwich plates. The plate is considered to be composed of two different functionally graded face sheets and an isotropic homogeneous core made of ceramic. Based on the first order shear deformation theory (FSDT) and linear piston theory, the set of governing equations and boundary conditions are derived. Dimensionless form of the governing equations and boundary conditions are derived and solved numerically using generalized differential quadrature method (GDQM) and critical velocity and flutter frequencies are calculated. For various values of the yaw angle, effect of different parameters like aspect ratio, thickness of the plate, power law indices and thickness of the core on the flutter boundaries are investigated. Numerical examples show that wings and tail fins with larger length and shorter width are more stable in supersonic flights. It is concluded for FG sandwich plates made of Al-Al2O3 that increase in volume fraction of ceramic (Al2O3) increases aeroelastic stability of the plate. Presented study confirms that improvement of aeroelastic behavior and weight of wings and tail fins of aircrafts are not consistent items. It is shown that value of the critical yaw angle depends on aspect ratio of the plate and other parameters including thickness and variation of properties have no considerable effect on it. Results of this paper can be used in design and analysis of wing and tail fin of supersonic airplanes.

원형실린더 와류발생 소음에 대한 경사각 효과 (The Effects of Yaw on the Vortex-Shedding Sound from a Circular Cylinder)

  • 홍훈빈;최종수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 추계학술대회논문집; 한국과학기술회관; 6 Nov. 1997
    • /
    • pp.263-270
    • /
    • 1997
  • For a cylinder in a uniform flow stream, sound is generated by the fluctuating pressure on the cylinder surface due to the vortex shedding behind the cylinder. It is known that the major parameters to predict the sound pressure are the characteristic length of the flow along the cylinder axis and the fluctuating lift coefficient. These parameters strongly depend on the Reynolds number and the yaw angle of the cylinder to the free stream. In this experimental study the effects of yaw on the flow parameters, and consequently on the generated sound are investigated. The surface pressure and the radiated sound are measured simultaneously for different yaw angles and showed that the reduced normal velocity component to the cylinder axis reduces the unsteady lift fluctuation which results in lowered sound press-are level, However, experimental result shows that "the cosine law" which uses the normal velocity component as a characteristic velocity for noise Generation from a yawed cylinder needs to be carefully reviewed. reviewed.

  • PDF

Vortical Flows over a LEX-Delta Wing at High Angles of Attack

  • Lee, Young-Ki;Kim, Heuy-Dong
    • Journal of Mechanical Science and Technology
    • /
    • 제18권12호
    • /
    • pp.2273-2283
    • /
    • 2004
  • The vortical flows over sharp-edged delta wings with and without a leading edge extension have been investigated using a computational method. Three-dimensional compressible Reynolds-averaged Navier-Stokes equations are solved to provide an understanding of the effects of the angle of attack and the angle of yaw on the development and interaction of vortices and the aerodynamic characteristics of the delta wing at a freestream velocity of 20 m/s. The present computations provide qualitatively reasonable predictions of vortical flow characteristics, compared with past wind tunnel measurements. In the presence of a leading edge extension, a significant change in the suction pressure peak in the chordwise direction is much reduced at a given angle of attack. The leading edge extension can also stabilize the wing vortex on the windward side at angles of yaw, which dominates the vortical flows over yawed delta wings.

Experimental Study on Tip Clearance Effects for Performance Characteristics of Ducted Fan

  • ;최현민;조진수
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2009년도 제33회 추계학술대회논문집
    • /
    • pp.395-398
    • /
    • 2009
  • Currently, a new generation of ducted fan UAVs (Unmanned Aerial Vehicles) is under development for a wide range of inspection, investigation and combat missions as well as for a variety of civil roles like traffic monitoring, meteorological studies, hazard mitigation etc. The current study presents extensive results obtained experimentally in order to investigate the tip clearance effects on performance characteristics of a ducted fan for small UAV systems. Three ducted fans having different tip clearance gap and with same rotor size were examined under three different yawed conditions of calibrated slanted hot-wire probe. Three dimensional velocity flow fields were measured from hub to tip at outlet of the ducted fan. The analysis of data were done by PLEAT (Phase locked Ensemble Averaging Technique) and three non-linear differential equations were solved simultaneously by using Newton -Rhapson numerical method. Flow field characteristics such as tip vortex and secondary flow were confirmed through axial, radial and tangential velocity contour plots. At the same time, the effects of tip clearance on axial thrust and input power were also investigated by using wind tunnel measurement system. For enhancing the performance of ducted fan, tip clearance level should be as small as possible.

  • PDF

포텐셜 유동을 기반으로 한 풍력 터빈 블레이드의 공력 해석 및 후류 예측 기법에 관한 연구 (Potential Based Prediction Methods of Aerodynamic and Wake Simulation of Wind Turbine Blade)

  • 김호건;신형기;이수갑
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.414-419
    • /
    • 2007
  • This paper describes the prediction of aerodynamic performance and wake of HAWT in normal and yawed flow operation using potential based methods. In order to analyze aerodynamic performance of wind turbine WINFAS program is used, which is based on VLM(Vortex Lattice Method) and CVC(Constant vorticity contour) Free wake model. Some problems of CVC vortex filament method are investigated arid to improve these problems vortex ring wake are introduced in behalf of CVC vortex filament. The prediction results using the vortex lattice wake are compared to experimental data.

  • PDF

회전하는 실린더에 의한 공력소음의 계산 (Computation of Noise from a Rotating Cylinder)

  • 장성욱;이승배;김진화;한재오
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.413-418
    • /
    • 2000
  • The noise sources from a rotating cylinder were identified to describe the blunt trailing edge noise. Firstly, LES formulation was applied to a non-orthogonal grid system and was tested with three-dimensional cross-flow over a cylinder with a yaw angle. The computed far-field noise showed peaks at Strouhal numbers ranging from 0.135 to 0.165 for the yawed cylinder flow with end-plates placed at both extremes under the yaw angle of $30^{\circ}$ and Reynolds number of $1.15{\times}10^4$. It was observed that the slantwise shedding at angles other than the cylinder yaw angle is intrinsic to inclined cylinder, with the result of shedding angles between $15^{\circ}$ and $31^{\circ}$. To study the trailing-edge wake thickness and unsteady lift-coefficient distribution in the span-wise direction of a rotating fan blade, the flows around rotating cylinder with 1,000 rpm were simulated and the far-field noise was exactly computed using the Ffowcs-Williams and Hawkings equation with quadrupole source term. The incoming velocities and stagnant zones were continuously distributed along the cylinder, and their changes made the Strouhal sheddings to occur at different phases even at almost same Strouhal number.

  • PDF

열선유속계를 이용한 좁은 유로 내 유속 측정법 (Velocity Measurement Technique in a Narrow Passage by Hot-wire Anemometer)

  • 김원갑;한성호;최영돈
    • 설비공학논문집
    • /
    • 제19권2호
    • /
    • pp.191-201
    • /
    • 2007
  • It was noted by the several researchers that the voltage outputs in response to a single yawed hot-wire sensor in a flow perpendicular to the axis deviate from the theoretical voltage output by King's law and Jorgensen's relation. This study noticed that the calibration coefficients of original Grande's method are not constant and fairly sensitive to the radial angle (${\alpha}_{R}$). For more accuracy, this study interpolated the parameters of the Grande relation as a function of radial angle and compared velocity components with ones by Jorgensen and original Grande relation in the calibration jet flow. Finally, as a test case, 3-dimensional turbulent flows of the inlet plane of 180 degree bend are measured and compared the velocity components by above three methods and showed the characteristics of the flows.

Quasi-steady three-degrees-of-freedom aerodynamic model of inclined/yawed prisms: Formulation and instability for galloping and static divergence

  • Cristoforo Demartino;Zhen Sun;Giulia Matteoni;Christos T. Georgakis
    • Wind and Structures
    • /
    • 제37권1호
    • /
    • pp.57-78
    • /
    • 2023
  • In this study, a generalized three-degree-of-freedom (3-DoF) analytical model is formulated to predict linear aerodynamic instabilities of a prism under quasi-steady (QS) conditions. The prism is assumed to possess a generic cross-section exposed to turbulent wind flow. The 3-DoFs encompass two orthogonal horizontal directions and rotation about the prism body axis. Inertial coupling is considered to account for the non-coincidence of the mass center and the rotation center. The aerodynamic force coefficients-drag, lift, and moment-depend on the Reynolds number based on relative flow velocity, angle of attack, and the angle between the wind and the cable. Aerodynamic forces are linearized with respect to the static equilibrium configuration and mean wind velocity. Routh-Hurwitz and Liénard and Chipart criteria are used in the eigenvalue problem, yielding an analytical solution for instabilities in galloping and static divergence types. Additionally, the minimum structural damping and stiffness required to prevent these instabilities are numerically determined. The proposed 3-DoF instability model is subsequently applied to a conductor with ice accretion and a full-scale dry inclined cable. In comparison to existing models, the developed model demonstrates superior prediction accuracy for unstable regions compared with results in wind tunnel tests.

중앙동체가 LEX-삼각날개 형상의 와류에 미치는 영향 (Effect of Centerbody on the Vortex Flow of a LEX-Delta Wing Configuration)

  • 손명환;정형석
    • 한국항공우주학회지
    • /
    • 제33권12호
    • /
    • pp.9-17
    • /
    • 2005
  • 본 연구에서는 중앙동체 구조물이 삼각날개의 와류유동 형성에 어떤 영향을 미치는지를 규명하기 위해 Leading Edge Extension(LEX)이 부착된 삼각날개 모델에 대해 유동 가시화(flow visualization)와 Particle Image Velocimetry(PIV) 측정의 풍동실험을 수행하였다. 이 두 실험방법에 의한 정성적 연구결과에서는 비교적 작은 받음각과 옆미끄럼각의 범위 내에서 중앙동체가 삼각날개 와류유동 특성에 미치는 영향이 미미한 것으로 관측되었다. 그러나 압력분포 측정에 의한 정량적 분석을 통해서는 고 받음각 및 큰 옆미끄럼각이 존재하는 경우 와류유동에 대한 중앙동체 영향이 현저히 증가하는 것을 확인할 수 있었다. 본 LEX-삼각날개 형상에서는 중앙동체의 영향은 옆미끄럼각의 영향에 비하여 크지 않다는 것도 확인할 수 있었다.

Steady wind force coefficients of inclined stay cables with water rivulet and their application to aerodynamics

  • Matsumoto, Masaru;Yagi, Tomomi;Sakai, Seiichiro;Ohya, Jun;Okada, Takao
    • Wind and Structures
    • /
    • 제8권2호
    • /
    • pp.107-120
    • /
    • 2005
  • The quasi-steady approaches to simulate the wind induced vibrations of inclined cables, especially on the rain-wind induced vibration, have been tried by many researchers. However, the steady wind force coefficients used in those methods include only the effects of water rivulet, but not the axial flow effects. The problem is the direct application of the conventional techniques to the inclined cable aerodynamics. Therefore, in this study, the method to implement the axial flow effects in the quasi-steady theory is considered and its applicability to the inclined cable aerodynamics is investigated. Then, it becomes clear that the perforated splitter plate in the wake of non-yawed circular cylinder can include the effects of axial flow in the steady wind force coefficients for inclined cables to a certain extent. Using the lateral force coefficients measured in this study, the quasi-steady theory may explain the wind induced instabilities of the inclined cables only in the relatively high reduced wind velocity region. When the Scruton number is less than around 40, the high speed vortex-induced vibration occurs around the onset wind velocity region of the galloping, and then, the quasi-steady approach cannot be applied for estimating the response of wind-induced vibration of inclined cable.