• Title/Summary/Keyword: yaw rate

Search Result 192, Processing Time 0.021 seconds

A Study on Mechanical Errors in Cone Beam Computed Tomography(CBCT) System (콘빔 전산화단층촬영(CBCT) 시스템에서 기계적 오류에 관한 연구)

  • Lee, Yi-Seong;Yoo, Eun-Jeong;Kim, Seung-Keun;Choi, Kyoung-Sik;Lee, Jeong-Woo;Suh, Tae-Suk;Kim, Joeng-Koo
    • Journal of radiological science and technology
    • /
    • v.36 no.2
    • /
    • pp.123-129
    • /
    • 2013
  • This study investigated the rate of setup variance by the rotating unbalance of gantry in image-guided radiation therapy. The equipments used linear accelerator(Elekta Synergy TM, UK) and a three-dimensional volume imaging mode(3D Volume View) in cone beam computed tomography(CBCT) system. 2D images obtained by rotating $360^{\circ}$and $180^{\circ}$ were reconstructed to 3D image. Catpan503 phantom and homogeneous phantom were used to measure the setup errors. Ball-bearing phantom was used to check the rotation axis of the CBCT. The volume image from CBCT using Catphan503 phantom and homogeneous phantom were analyzed and compared to images from conventional CT in the six dimensional view(X, Y, Z, Roll, Pitch, and Yaw). The variance ratio of setup error were difference in X 0.6 mm, Y 0.5 mm Z 0.5 mm when the gantry rotated $360^{\circ}$ in orthogonal coordinate. whereas rotated $180^{\circ}$, the error measured 0.9 mm, 0.2 mm, 0.3 mm in X, Y, Z respectively. In the rotating coordinates, the more increased the rotating unbalance, the more raised average ratio of setup errors. The resolution of CBCT images showed 2 level of difference in the table recommended. CBCT had a good agreement compared to each recommended values which is the mechanical safety, geometry accuracy and image quality. The rotating unbalance of gentry vary hardly in orthogonal coordinate. However, in rotating coordinate of gantry exceeded the ${\pm}1^{\circ}$ of recommended value. Therefore, when we do sophisticated radiation therapy six dimensional correction is needed.

Development of Wireless Ambulatory System Measuring 3-D Motion as Podiatric Diagnosis (족부 진단용 3차원 움직임 측정을 위한 무선 이동형 시스템 개발)

  • Kim, Jin-Ho;Kim, Hwa-In;Kim, Dong-Wook;Won, Yong-Gwan;Kim, Jung-Ja
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.5B
    • /
    • pp.502-510
    • /
    • 2011
  • In this research, a wireless movable systems is introduced that is applicable for real-world clinical examination in order to resolve the inconvenience of wired motion analysis system which uses markers by measuring more accurately the angle of the 3D motion. The system is composed of bluetooth data transmission and 6 DOF inertial measurement system that is composed of 3-axis acceleration and 3-axis gyroscope. The samples were collected from 10 feet of 5 young children who were confirmed as patients having flat feet and achilles tendonitis by podiatric expert in pediatrics, and the validity of the system was evaluated by comparison with the opinion by the expert using the EMG data and the data measured by the developed system. ROM of ankle was measured by the difference between the maximum and the minimum peaks of 3-axis values (pitch, roll and yaw) measured at lateral malleolus bone, and based on this measured value, the eversion rate became relatively higher as flat feet state become worse, which is equivalent to the opinion from the podiatric experts. It was shown that there is a relation between the certain muscle activities and the abnormal motion of foot caused by disease.