• Title/Summary/Keyword: xylanase

Search Result 466, Processing Time 0.023 seconds

Production of Xylooligo-Saccharides and Purification of Extracellular Xylanase from Streptomyces chibaensis J-59 (방선균 Streptomyces chibaensis J-59 Xylanase의 정제 및 자일로 올리고당(Xylooligo-Saccharides)의 생산)

  • Joo, Gil-Jae;Rhee, In-Koo
    • Current Research on Agriculture and Life Sciences
    • /
    • v.14
    • /
    • pp.111-122
    • /
    • 1996
  • S. chibaensis J-59 produced an extracellular xylanase in a CSL medium composed of 1.5% com steep liquor, 0.1% $MgSO_4{\cdot}7H_2O$, 0.012% $CoCl_2{\cdot}6H_2O$, and 0.15% glucose containing xylan. but it did not produce in the culture medium containing xylose. The production of enzyme reached to a maximum level (0.83 uints/ml) when bacteria were cultured in 2.5 l jar fermentor for 48hrs at $30^{\circ}C$ and pH 7.0. Furthermore, S. chibaensis J-59 produced an intracellular glucose isomerase in a medium containing xylan and/or xylose. Xylanase was purified 29-fold over the culture supernatants of S. chibaensis J-59 by ammonium sulfate fractionation, chromatography on DEAE-Sephadex A-50, and gel filtration on Sephadex G-200. The purified enzyme is a monomeric enzyme with a native molecular mass of 25 kDa and a subunit molecular mass of 25 kDa. The purified enzyme requires $Mg^{2+}$ for activity, $Ca^{2+}$, $Co^{2+}$ is not an inhibitor but inhibit by $Fe^{3+}$, $Hg^{2+}$, and $Cu^{2+}$, sodium dodecyl sulfate, N-bromosuccinide. Pattern of hydrolysis demonstrated that the xylanase was an endo-splitting enzyme able to break down birchwood xylan at random giving xylobiose, xylotriose and xylotetrose as the main end products.

  • PDF

Effect of Xylanase Supplementation on the Net Energy for Production, Performance and Gut Microflora of Broilers Fed Corn/Soy-based Diet

  • Nian, F.;Guo, Y.M.;Ru, Y.J.;Peron, A.;Li, F.D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.9
    • /
    • pp.1282-1287
    • /
    • 2011
  • The objective of this study was to assess the effect of xylanase on net energy for production, performance, nutrient digestion and gut microflora of broilers fed corn/soy-based diet. Eighty-four day-old male broiler chicks were allocated to two groups receiving two treatments, respectively. Each treatment had six replicate cages with seven broilers per cage. The diets were based on corn and soybean. The treatments were: i) basal diet reduced in apparent metabolizable energy (-0.63 MJ/kg compared to commercial diet specifications); ii) basal diet supplemented xylanase at 4,000 u/kg feed. The experiment used the auto-control, open circuit respiration calorimetry apparatus to examine the heat production and net energy for production. The results revealed that xylanase supplementation did not affect growth performance and diet AME value, but increased $NE_p$ value by 18.2% (p<0.05) and decreased daily heat production per $kg^{0.75}$ by 31.7% (p<0.05). There was no effect (p>0.05) of xylanase supplementation on the ileal digestibility of N and hemicelluloses, but the ileum digestibility of energy was increased by 2% by xylanase supplementation (p<0.05). Xylanase supplementation increased (p<0.05) the count of lactobacillus and bifidobacterial in the caecum.

Mode of Action and Chemical Modification of an Alkaline Xylanase (CX-III) from Alkalophilic Cephalosporium sp. RYM-202 (호알카리성 Cephalosporium sp. RYM-202로부터 분리된 alkaline xylanase (CX-III)의 작용 양상 및 화학적 변환)

  • Kang, Myoung-Kyu;Maeng, Pil-Jae;Rhee, Young-Ha
    • The Korean Journal of Mycology
    • /
    • v.24 no.4 s.79
    • /
    • pp.255-264
    • /
    • 1996
  • The hydrolysis products formed from birchwood xylan by the action of an alkaline xylanase (CX-III) from alkalophilic Cephaloxporium sp. RYM-202 were xylobiose and xylooligosaccharides polymerized with more than 4 sugar molecules. This enzyme was not active on xylobiose but readily attacked xylotriose accumulating xylobiose as a major product. The predominant end-products from xylotetraose by CX-III were xylobiose and xylotriose. These results indicate that the enzyme is typically endo-type xylanase possessing transglycosidase activity. Chemical modification of CX-III with N-bromosuccinimide revealed that two tryptophan residues per molecule of CX-III were essential for its catalytic activity on xylan. On the other hand, iodoacetamide and diethylpyrocarbonate did not influence the activity of the enzyme, suggesting that cysteine and histidine residues are not involved in the active site of this alkaline xylanase.

  • PDF

Synergistic Effect of Substrates on the Biosynthesis of Cellulase and Xylanase Complexes from Aspergillus nidulans (Aspergillus nidulans 의 섬유질 분해효소계 생합성에 미치는 기질의 공조효과)

  • Lee, Jeong-Ae;Maeng, Jin-Soo;Maeng, Pil-Jae;Rhee, Young-Ha
    • The Korean Journal of Mycology
    • /
    • v.17 no.2
    • /
    • pp.57-65
    • /
    • 1989
  • The effect of various cellulosic and hemicellulosic substrates on the induction of cellulase and xylanase complexes in Aapergillus nidulans was investigated. The most efficient substrates for the induction of cellulase and xylanase complexes were carboxymethylcellulose for endoglucanase, cellobiose for ${\beta}-glucosidase$, and xylan for endoxylanase and ${\beta}-xylosidase$, respectively. However, the mixtures of these substrates, especially CMC-xylan and CMC-xylan-laminarin mixture, were much more effective not only for the enhancement of the biosynthesis of all the cellulase and xylanase complexes but also for the balanced production of these enzyme components than individual substrate. The polyacrylamide gel electrophoresis followed by activity staining showed the variation in the patterns and relative intensity of ${\beta}-glucosidase$, endoglucanase and endoxylanase components in individual enzyme preparations from A. nidulans cultures grown on different substrates. These results suggest that the biosynthesis is of cellulase and xylanase systems in A. nidulans is regulated in coordination at the level of induction.

  • PDF

Mode of action anf active site of xylanase II from Trichoderma koningii ATCC 26113 (Trichoderma koningii ATCC 26113에서 분리된 xylanase II의 작용양상과 활성부위)

  • Kim, Hyun-Ju;Kang, Sa-Ouk;Hah, Yung-Chil
    • Korean Journal of Microbiology
    • /
    • v.32 no.4
    • /
    • pp.306-314
    • /
    • 1994
  • The action mode of xylanase II from Trichoderma koningii ATCC 26113 on xylan and related oligosaccharides (xylotriose, xylotetraose, and arabinoxylotriose) indicated that xylanase II is an endo-enzyme and also has trans-xylosidase activity. The $^1HNMR$-NMR studies of the reaction products formed by xylanase II revealed that all the hydrolysis products of xylooligosaccharides by the enzyme have only ${\beta}$-1,4-xylosidic linkage(s). Chemical modification of the enzyme with iodoacetamide showed that two cysteine residues per molecule of the enzyme was essential for the activity. Modification of the enzyme with N-bromosuccinimide demonstrated that four of the eight tryptophan residues were involved in its active site.

  • PDF

Individual or combinational use of phytase, protease, and xylanase for the impacts on total tract digestibility of corn, soybean meal, and distillers dried grains with soluble fed to pigs

  • Adsos Adami Passos;Vitor Hugo Cardoso Moita;Sung Woo Kim
    • Animal Bioscience
    • /
    • v.36 no.12
    • /
    • pp.1869-1879
    • /
    • 2023
  • Objective: This study was to evaluate the effects of individual or combinational use of phytase, protease, and xylanase on total tract digestibility of corn, soybean meal, and distillers dried grains with soluble (DDGS) fed to pigs. Methods: Each experiment had four 4×4 Latin squares using 16 barrows. Each period had 5-d adaptation and 3-d collection. All experiments had: CON (no enzyme); Phy (CON+phytase); Xyl (CON+xylanase); Pro (CON+protease); Phy+Xyl; Phy+Pro, Xyl+Pro, Phy+Xyl+Pro. Each Latin square had 'CON, Phy, Xyl, and Phy+Xyl'; 'CON, Phy, Pro, and Phy+Pro'; 'CON, Pro, Xyl, and Xyl+Pro'; and 'Phy+Xyl, Phy+Pro, Xyl+Pro, Phy+Xyl+Pro'. Results: The digestible energy (DE), metabolizable energy (ME), and nitrogen retention (NR) of corn were not affected by enzymes but the apparent total tract digestibility (ATTD) of phosphorus (P) was improved (p<0.01) by Phy. The DE and ATTD dry matter (DM) in soybean meal were increased (p<0.05) by Phy+Pro and the ATTD P was improved (p<0.01) by Phy, Phy+Pro, and Phy+Xyl. The DE, ME, and ATTD DM in DDGS were improved (p<0.05) by Phy+Xyl and the ATTD P was improved (p<0.01) by Phy, Phy+Pro, and Phy+Xyl. Conclusion: Phytase individually or in combination with xylanase and protease improved the Ca and P digestibility of corn, soybean meal, and DDGS, from the hydrolysis of phytic acid. The supplementation of protease was more effective when combined with phytase and xylanase in the soybean meal and DDGS possibly due to a higher protein content in these feedstuffs. Xylanase was more effective in DDGS diets due to the elevated levels of non-starch polysaccharides in these feedstuffs. However, when xylanase was combined with phytase, it demonstrated a higher efficacy improving the nutrient digestibility of pigs. Overall, combinational uses of feed enzymes can be more efficient for nutrient utilization in soybean meal and DDGS than single enzymes.

Streptomyces sp. K-53 균주로부터 생산된 xylanase와 glucose isomerase의 관계에 관한연구

  • 김정순;정태화;한문희
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 1975.12a
    • /
    • pp.181.1-181
    • /
    • 1975
  • 토양에서 분리한 glucose isomerase를 생성하는 Streptomyces속 균주중에서 xylanase 활성이 가장 높은 균주 Streptomyces sp. K-53을 xylan을 함유한 영양배지에서 배양하여 xylan에 의한 xylanase의 유도 과정과 xylan의 분해산물이 xylose를 이용하여 glucose isomerase를 생성하는 과정의 일연의 관계를 알아보기 위해서 몇가지 실험한 결과는 다음과 같다.(중략)

  • PDF

Cloning and Expression of a Xylanase Gene from Alkali-tolerant Bacillus sp. YA-14 in Escherichia coli (알카리 내성 Bacillus sp. YA-14의 xylanase 유전자 cloning)

  • 유주현;박덕철;정용준;공인수
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.2
    • /
    • pp.154-159
    • /
    • 1989
  • Chromosomal DNA fragments of Bacillus sp. YA-14 isolated from soil as a potent xylan hydrolyzing bacterium, were ligated to a vector plasmid, pBR322, and used to transfer Escherichia coli HB101 cells. The recombinant plasmid pYDC21 was found to enable the transformants to produce xylanase. pYDC21 was found to contain the 3 kb HindIII fragment originated from the Bacillus sp. YA-14 chromosomal DNA by southern hybridization. The optimum temperature and pH for the reaction of xylanse produced by E. coli (pYDC21) were appeared at 50$_7$C and pH 7.0, respectiveiy. the xylanase enzyme was stable between pH 5.0 and 7.0 and maintained stably up to 4$0^{\circ}C$.

  • PDF

Molecular Cloning and Expression of a Xylanase Gene from Alkalophilic Bacillus sp.

  • Yu, Ju-Hyun;Kang, Yun-Sook;Park, Young-Seo;Bai, Dong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.1 no.4
    • /
    • pp.251-255
    • /
    • 1991
  • A 16 kilobase (kb) HindIII fragment of alkalophilic Bacillus sp. YC-335 containing a gene for xylanase synthesis was inserted at the HindIII site of pBR322 and cloned in Escherichia coli HB101. After subcloning of recombinant plasmid pYS52, the 1.5 kb fragment was found to code for xylanase activity, and the hybrid plasmid was named pYS55. The DNA insert of the plasmid was subjected to restriction enzyme mapping, which showed that pYS55 had single site for PuvII and SstI in the 1.5 kb insert fragment. Southern hybridization analysis revealed that the cloned gene was hybridized with chromosomal DNA from alkalophilic Bacillus sp. YC-335. About 64% of the enzyme activity was observed in the extracellular and periplasmic space of E. coli HB10l carrying pYS55.

  • PDF

Purification of an Xylanase from the Extracellular Xylanolytic Systems of Trichoderma viride and Hydrolysis of Xylan (Trichoderma viride 균체외 효소로 부터 Xylanase의 정제 및 Xylan의 분해)

  • Eom, Tae-Jin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.22-29
    • /
    • 1991
  • The endo-1,4-${\beta}$-xylanase was extracted and purified from the extracellular xylanolytic systems of Trichoderma viride. The crude enzyme was chromatographed with ion-exchange reins of DEAE Sepharose CL-6B, Sepharose, S-Sepharose CL-6B and the resulting xylanase was turned out to be a single protein as 20KD hy SDS-polyacrylamide gel electrophoresis. The xylooligomers were obtained from xylan by incubation with the purified xylanase up to 50%. The ${\beta}$-xylosidase lost its activity completely by incubation of crude enzyme for 24hr with buffer solution of pH 2.8 at $27^{\circ}C$. And also, the xylooligomers were obtained from xylan as a main product by incubation with the crude enzyme treated with acidic buffer.

  • PDF