• 제목/요약/키워드: xylB

검색결과 32건 처리시간 0.178초

Catabolite Repression of the Bacillus stearothermophilus $\beta$-Xylosidase Gene (xylA) in Bacillus subtilis

  • Cho, Ssang-Goo;Choi, Yong-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • 제8권1호
    • /
    • pp.21-27
    • /
    • 1998
  • The xylA gene of Bacillus stearothermophilus encoding the major ${\beta}$-xylosidase was previously cloned and sequenced. In the present study we examined the regulation of the cloned xylA gene expression in Bauillus subtilis MW15 carrying the xylA::aprA fusion plasmids. The induction of the fused xylA gene expression remained uninfluenced by any of the carbon sources tested but the gene expression was repressed about 2-3 fold in the presence of glucose. Two CRE-like sequences (CRE-1: nucleotides + 124 to +136 and CRE-2: +247 to +259) were recognized within the reading frame region of the xylA gene. The deletion experiments showed that the CRE-2 sequence had a role in catabolite repression (CR) as a true CRE of the xylA gene, but the CRE-1 had no effect on CR of the xylA gene expression. Surprisingly, the deletion of the CRE- 1 sequence reduced about 2~3 fold of the expression of the xylA fused gene. The repression ratios of the xylA gene expression were estimated to be about 0.4 from the assay of subtilisin activity, and about 0.3 at the level of transcription by determining the amounts of xylA transcripts in B. subtilis. While, the level of CR of the xylA gene was assessed to be about l0-fold in previous work when the relative amounts of the xylA transcripts were measured in B. stearothermophilus.

  • PDF

Deletion of xylR Gene Enhances Expression of Xylose Isomerase in Streptomyces lividans TK24

  • Heo, Gun-Youn;Kim, Won-Chan;Joo, Gil-Jae;Kwak, Yun-Young;Shin, Jae-Ho;Roh, Dong-Hyun;Park, Heui-Dong;Rhee, In-Koo
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권5호
    • /
    • pp.837-844
    • /
    • 2008
  • Glucose (xylose) isomerases from Streptomyces sp. have been used for the production of high fructose corn syrup for industrial purposes. An 11-kb DNA fragment containing the xyl gene cluster was isolated from Streptomyces lividans TK24 and its nucleotide sequences were analyzed. It was found that the xyl gene cluster contained a putative transcriptional repressor (xylR), xylulokinase (xylB), and xylose isomerase (xylA) genes. The transcriptional directions of the xylB and xylA genes were divergent, which is consistent to those found in other streptomycetes. A gene encoding XylR was located downstream of the xylB gene in the same direction, and its mutant strain produced xylose isomerase regardless of xylose in the media. The enzyme expression level in the mutant was 4.6 times higher than that in the parent strain under xylose-induced condition. Even in the absence of xylose, the mutant strain produce over 60% of enzyme compared with the xylose-induced condition. Gel mobility shift assay showed that XylR was able to bind to the putative xyl promoter, and its binding was inhibited by the addition of xylose in vitro. This result suggested that XylR acts as a repressor in the S. lividans xylose operon.

Overexpressions of xylA and xylB in Klebsiella pneumoniae Lead to Enhanced 1,3-Propanediol Production by Cofermentation of Glycerol and Xylose

  • Lu, Xinyao;Fu, Xiaomeng;Zong, Hong;Zhuge, Bin
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권7호
    • /
    • pp.1252-1258
    • /
    • 2016
  • 1,3-Propanediol (1,3-PD) is a valuable platform compound. Many studies have shown that the supplement of NADH plays a key role in the bioproduction of 1,3-PD from Klebsiella pneumoniae. In this study, the xylA and xylB genes from Escherichia coli were overexpressed individually or simultaneously in K. pneumoniae to improve the production of 1,3-PD by cofermentation of glycerol and xylose. Compared with the parent strain, the xylose consumption was significantly increased by the introduction of these two genes. The 1,3-PD titers were raised from 17.9 g/l to 23.5, 23.9, and 24.4 g/l, respectively, by the overexpression of xylA and xylB as well as their coexpression. The glycerol conversion rate (mol/mol) was enhanced from 54.1% to 73.8%. The concentration of 2,3-butanediol was increased by 50% at the middle stage but drastically decreased after that. The NADH and NADH/NAD+ ratio were improved. This report suggests that overexpression of xylA or xylB is an effective strategy to improve the xylose assimilation rate to provide abundant reducing power for the biosynthesis of 1,3-PD in K. pneumoniae.

Regulation of $\beta$-Xylosidase (XylA) Synthesis in Bacillus stearothermophilus

  • Cho, Ssang-Goo;Choi, Yong-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • 제8권1호
    • /
    • pp.14-20
    • /
    • 1998
  • Syntheses of the B. stearothermophilus xylanolytic enzymes such as xylanases, ${\beta}$-xylosidases, ${\alpha}$-arabinofurano-sidases, and esterases, were observed to be regulated by the carbon source present in the culture media. Xylan induced synthesis of ${\beta}$-xylosidase at the highest level while xylose gave about 30% of the ${\beta}$-xylosidase activity induced by xylan. The lowest syntheses of the xylanolytic enzymes above mentioned were detected in the basal medium containing glucose as a sole carbon source. When a mixture of xylan and glucose was used as a carbon source, we could observe glucose repression of xylanase (about 70-fold) and ${\beta}$-xylosidase (about 40-fold) syntheses. Whereas, the level of the glucose repression of the expression of the xylA gene encoding the major ${\beta}$-xylosidase of B. stearothermophilus was assessed to be about l0-fold when the relative amounts of the xylA transcript were determined. From the sequence of the xylA gene, we could find two CRE-like sequences (CRE-l: nucleotides +124 to +136 and CRE-2:+247 to +259) within the reading frame of the xylA gene, either or both of which were suspected to be involved in catabolite repression of the xylA gene.

  • PDF

방선균의 xylB 변이주에 의한 포도당 이성화효소의 생산

  • 주길재;이인구
    • 한국미생물·생명공학회지
    • /
    • 제25권1호
    • /
    • pp.75-81
    • /
    • 1997
  • Streptomyces chibaensis J-59 did not grow in the culture medium containing only xylose or xylan as a carbon source, because it was defective in xylulokinase production; xylB mutant. S. chibaensis J-59 was able to produce xylanase and $\beta $-xylosidase as well as glucose isomerase. The glucose isomerase in S. chilbaensis J-59 was induced in the medium containing xylan or xylose which could be utilized as an inducer but not sa carbon and energy sources. So we tried to produce glucose isomerase whthout consumption of xylose or xylan as an inducer by using xylB mutant S. chilbaensis J-59. The optimum condition for the production of the glucose isomerase was attained in a culture medium composed of 1% xylan, 0.15% glucose, 1.5% corn steep liquor, 0.1% MaSO$_{4}$ $\CDOT $7H$_{2}$O, and 0.012% CoCL$_{2}$ $\CDOT $ 6H$_{2}$O(pH 7.0). The production of the enzyme reached to a maximum level when the bacteria were cultured for 42 h at 30$\circ $C. The enzyme production in a jar fermentor was increased twice as much as that in a flask culture.

  • PDF

대장균(大腸菌)의 xylRjT 변이주(變異株)의 분리(分離) 및 그 특성(特性) (Isolation and Characterization of xylR/TMutants in Escherichia coli)

  • 노동현;이인구
    • Current Research on Agriculture and Life Sciences
    • /
    • 제10권
    • /
    • pp.125-135
    • /
    • 1992
  • Xylose 오페론의 조절기구(調節機構)를 밝히고 xyl 유전자(遺傳子)를 가진 재조합유전자(再組合遺傳子)들의 수용세포(受容細胞)로 사용(使用)하기 위해 대장균(大腸菌)에 NTG를 처리(處理)하여 xylose를 이용(利用)할 수 없는 xyl 변이주(變異株)를 최종(最終) 9주(株) 선발(選拔)하였다. MC-Xyl 한천평판배지(寒天平板培地)에서 백색(白色) 콜로니로 분리(分離)된 xyl 변이주(變異株)들은 모두 LB와 DM-Glc 배지(培地)에서는 친주(親株)인 E. coli JM109와 동일(同一)하게 자랐으나, DM-Xyl 배지(培地)에서는 생육(生育)하지 못했다. 그러나 xyl 유전자(遺傳子) 전체(全體)를 가진 pBX1으로 형질변형(形質變形)시킨 결과(結果) 모두MC-Xyl 한천평판배지(寒天平板培地)에서는 적색(赤色) 콜로니를 나타내고 xylose isomerase 활성(活性)도 친주(親株)와 유사(類似)하게 되살아 났다. 이들의 부귀(復歸) 돌연변이빈도(突然變異頻度)는 $10^{-8}{\sim}10^{-11}$ 이하(以下)로 유전적(遺傳的)으로 안정(安定)되었다. 분리(分離)된 xyl 변이주(變異株)와 그들의 형질전환주(形質轉換株)에 대하여 MC-Xyl과 MC-Xylu 한천평판배지(寒天平板培地)에서 콜로니의 색(色)을 관찰(觀察)하였고 xylose isomerase와 xylulokinase의 활성(活性)을 측정(測定)하여 다시 xylT 변이주(變異株) 3주(株)(DH13, DH121, DH125) xylA 변이주(變異株) 1주(株)(DH77), xylB 변이주(變異株) 1주(株)(DH43) 그리고 xylose 존재하(存在下)에서 이들 효소(酵素)들의 생성(生成)을 조절(調節)하는 xylR 변이주(變異株) 3주(株)(DH10, DH53, DH60), 마지막으로 xylR, A 유전자부위(遺傳子部位)에 변이(變異)가 일어난 것(DH35)으로 최종선별(最終選別)하였다.

  • PDF

Bacillus stearothermophilus No. 236 \beta-xylosidase 유전자 변이 Promoter의 Strength분석 (Strength of the Mutant Promoters for the \beta-xylosidase gene of Bacillus stearothermophilus No. 236)

  • 최용진;김미동
    • 한국미생물·생명공학회지
    • /
    • 제31권2호
    • /
    • pp.111-116
    • /
    • 2003
  • Xylan 분해 균주인 Bacillus stearothermophilus No. 236 분리균의 $\beta$-xylosidase 생산 유전자(xylA)의 염기 서열 및 transcription start site를 결정한 이전 연구 결과에 의하면 xylA 유전자는 매우 특이하게 UUG codon에서 translation이 시작되며 initiation codon 15dp 윗쪽에는 promoter로 추정되는 염기 서열을 가지고 있는 것으로 분석되었다. 이와 같은 xylA 유전자 promoter region의 구조는 E. coli에 클로닝된 xalA 유전자를 이용한 실험 결과로도 확인되었다. xalA promoter의 -10 element는 CATAAT로서 6개의 염기 중 5개가 그리고 -35 element의 경우는 TTGTTA로서 6개의 염기 중 4개가 consensus sequence와 일치되었으나 두 hexamer 사이의 거리가 최적 거리에서 크게 벗어난 12 bp인 것으로 분석되었다. 본 연구에서는 $\beta$-xylosidase의 대량 생산을 위한 연구의 일환으로 xalA promoter sequence의 체계적 구조 변화에 의한 promoter strength에 미치는 효과를 E. coli와 B. subtilis두 숙주 세포에서 조사 분석해 본 결과, 첫째로 두 promoter elements사이의 거리를 최적거리인 17 bp로 바꾸었을 때 xalA의 발현율은 E. coli에서는 1.6배, B. subtilis에서는 2.5배 정도 증가함을 보여주었다. 그리고 -35 element는 consensus sequence와 같이 5'쪽에서 네번째 위치에 있는 T$\longrightarrow$A로 변이 시켰을 때 E. coli경우 2.3배, 특히 B. subtilis에서는 35배나 되는 가장 높은 promoter 활성의 증가를 보였다. 그러나 -10 sequence의 경우 consensus sequence와 같이 5' 쪽에서 첫번째 위치에 있는 C$\longrightarrow$T로 transition시켰을 때 예상외로 오히려 발현율이 5~15배까지 낮아지는 특이한 결과를 얻었다. 따라서 본 연구 결과 xalA promoter의 경우 -10 sequence인 CATAAT의 C와 -35 element의 두 염기가 promoter활성에 있어 가장 중요한 염기임을 알 수 있었다.

Complete genome sequence of Lactococcus lactis strain K_LL005, a xylose-utilizing bacterium isolated from grasshopper (Oxya chinensis sinuosa)

  • Kim, Hyeri;Guevarra, Robin B.;Cho, Jae Hyoung;Kim, Hyeun Bum;Lee, Ju-Hoon
    • Journal of Animal Science and Technology
    • /
    • 제63권1호
    • /
    • pp.191-193
    • /
    • 2021
  • Lactococcus lactis is a fermentative lactic acid bacterium that is used extensively in food fermentations. The L. lactis strain K_LL005 was isolated from the grasshopper (Oxya chinensis sinuosa) gut in Korea. In this study, we reported the complete genome sequence of Lactococcus lactis K_LL005. The final complete genome assembly consist of one circular chromosome (2,375,093 bp) with an overall guanine + cytosine (G + C) content of 35.0%. Annotation results revealed 2,281 protein-coding sequences (CDSs), 19 rRNAs, and 68 tRNA genes. Lactococcus lactis K_LL005 has a gene encoding xylose metabolism such as xylR, xylA, and xylB (xylRAB).

Tris-buffer에 첨가되는 당의 종류가 동결.융해정자의 첨체 손상에 미치는 영향 (Effect of Sugar Kind Added in Tris-buffer on Acrosome Damage of Post-thaw Spermatozoa in Canine)

  • 유대중;공일근
    • 한국수정란이식학회지
    • /
    • 제18권2호
    • /
    • pp.91-96
    • /
    • 2003
  • 본 연구는 개의 동결정액제조 시 동결보호 희석액 내에 첨가되는 당의 종류와 조합이 동결융해 후 정자 두부의 첨체의 손상과 생존율 및 운동성 등에 미치는 영향에 대하여 조사하고자 실시하였다. 당의 종류에 따른 정자의 첨체손상 정도는 정상 정자비 율은 Fru+Tre, 처리구가 Fructose, Trehalose, Fru+Tre+Xyl, Fru+Xyl, Tre+Xyl, Xylose구에 비해 가장 높았다(83.0$\pm$5.6%, 82.3 $\pm$3.1%, 81.7$\pm$2.1%, 81.0$\pm$5.6%, 80.3$\pm$4.5%, 76.7$\pm$3.8%, 72.0$\pm$2.0%;(P<0.05). Fru+Tre처리구에서 CASA 분석 후 운동성이 Fru +Tre+Xyl, Tre+Xyl, Fru+Xyl, Xylose, Trehalose, Fructose구에 비해 가장 높았다. (79$\pm$6 vs 75$\pm$3, 74$\pm$8, 71$\pm$11, 70$\pm$4, 66$\pm$15, 63$\pm$12%; P< 0.05). 전진운동율은 Fru+Tre 처리구가 Fru+Tre+Xyl, Tre+Xyl, Fru+Xyl, Xylose, Trehalose, Fructose구에 비해 가장 높았다(67$\pm$7, 64$\pm$3, 62$\pm$6, 61$\pm$8, 60$\pm$2, 57$\pm$13, 53$\pm$10%; P<0.05). 본 연구결과 70 mM Fru+Tre (two combination) 가 첨체 손상정도가 낮았으며 가장 높은 운동성 및 전진 운동율의 결과를 얻을 수 있었다.

Bacillus licheniformis NBL420 유래의 Xylanase-Cellulase 활성을 갖는 융합단백질 제작과 대장균에서의 발현 (Construction of bifunctional xylanase-cellulase fusion protein from Bacillus licheniformis NBL420 and its expression in E. coli)

  • 홍인표;최신건
    • 산업기술연구
    • /
    • 제29권A호
    • /
    • pp.161-167
    • /
    • 2009
  • The bifunctional Xylanase-Cellulase hybrid protein was constructed by gene fusion. Two genes corresponding to endoxylanase gene (xylS) and endocellulase gene (celA) were amplified by PCR from Bacillus licleniformis NBL420. It was then linked through splicing by overlap extension (SOE) by PCR method. The two resulting fused hybrids, xyl/cel and cel/xyl, which differ by its orientation, were confirmed by its nucleotide sequencings. One of two fusion genes, xyl/cel was successfully expressed into pET22b(+) vector (pxyl/cel) with bifunctional xylanase-cellulase activity. On the contrary, the other cel/xyl fusion protein showed only cellulase activity with much decreased xylanase activity. Enzymatic properties of Xyl/Cel fusion protein were investigated regarding optimum pH, optimum temp, thermostability, and pH stability. It was revealed that Xyl/Cel fusion protein retained the bifunctional xylanase-cellulase activities eventhough two enzymes were connected with each other directly. These informations could be useful for construction of other hybrid proteins as well as increased range of substrate utilization.

  • PDF