• Title/Summary/Keyword: xenon

Search Result 282, Processing Time 0.028 seconds

Development of Xenon Feed System for a Hall-Effect Thruster to Space-propulsion Applications (우주추진용 홀방식의 전기추력기를 위한 제논연료공급장치 개발)

  • Kim, Youn-Ho;Kang, Seong-Min;Jung, Yun-Hwang;Seon, Jong-Ho;Wee, Jung-Hyun;Yoon, Ho-Sung;Choe, Won-Ho;Lee, Jong-Sub;Seo, Mi-Hui
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.1
    • /
    • pp.84-89
    • /
    • 2011
  • A Xenon Feed System (XFS) has been developed for hall-effect thruster to small satellite space-propulsion system applications. The XFS delivers low pressure gas to the Anode and Cathode of thruster head unit from a xenon storage tank. Accurate throttling of the propellant mass flow rate is independently required for each channel of the thruster head unit. The mass flow rate to each channel is controlled using the accumulator tank pressure regulation through a micron orifice and isolation valve. This paper discusses the Xenon Feed System design including the component selections, performance estimation and functional test.

Observer Theory Applied to the Optimal Control of Xenon Concentration in a Nuclear Reactor (옵저버 이론의 원자로 지논 농도 최적제어에의 응용)

  • Woo, Hae-Seuk;Cho, Nam-Zin
    • Nuclear Engineering and Technology
    • /
    • v.21 no.2
    • /
    • pp.99-110
    • /
    • 1989
  • The optimal control of xenon concentration in a nuclear reactor is posed as a linear quadratic regulator problem with state feedback control. Since it is not possible to measure the state variables such as xenon and iodine concentrations directly, implementation of the optimal state feedback control law requires estimation of the unmeasurable state variables. The estimation method used is based on the Luenberger observer. The set of the reactor kinetics equations is a stiff system. This singularly perturbed system arises from the interaction of slow dynamic modes (iodine and xenon concentrations) and fast dynamic modes (neutron flux, fuel and coolant temperatures). The singular perturbation technique is used to overcome this stiffness problem. The observer-based controller of the original system is effected by separate design of the observer and controller of the reduced subsystem and the fast subsystem. In particular, since in the reactor kinetics control problem analyzed in the study the fast mode dies out quickly, we need only design the observer for the reduced slow subsystem. The results of the test problems demonstrated that the state feedback control of the xenon oscillation can be accomplished efficiently and without sacrificing accuracy by using the observer combined with the singular perturbation method.

  • PDF

PWR Core Stability Against Xenon-Induced Spatial Power Oscillation (경수로심의 제논진동 해석)

  • Ho Ju Moon;Ki In Han
    • Nuclear Engineering and Technology
    • /
    • v.14 no.2
    • /
    • pp.51-63
    • /
    • 1982
  • Stability of a PWR core against xenon-induced axial power oscillation is studied using one-dimensional xenon trausient analysis code, DD1D, that has been developed and verified at KAERI. Analyzed by DD1D utilizing the Kori Unit 1 design and operating data is the sensitivity of axial stability in a PWR core to the changes in core physical parameters including core power level, moderator temperature coefficient, core inlet temperature, doppler power coefficient and core average turnup. Through the sensitivity study the Kori Unit 1 core is found to be stable against axial xenon oscillation at the beginning of cycle 1. But, it becomes less stable as turnup progresses, and unstable at the end of the cycle. Such a decrease in stability is mainly due to combined effect of changes in axial power distribution, moderator temperature coefficient and doppler power coefficient as core turnup progresses. It is concluded from the stability analysis of the Kori Unit 1 core that design of a large PWR with high power density and increased dimension can not avoid xenon-induced axial power instabilities to some extents, especially at the end of cycle.

  • PDF

Large-volume and room-temperature gamma spectrometer for environmental radiation monitoring

  • Coulon, Romain;Dumazert, Jonathan;Tith, Tola;Rohee, Emmanuel;Boudergui, Karim
    • Nuclear Engineering and Technology
    • /
    • v.49 no.7
    • /
    • pp.1489-1494
    • /
    • 2017
  • The use of a room-temperature gamma spectrometer is an issue in environmental radiation monitoring. To monitor radionuclides released around a nuclear power plant, suitable instruments giving fast and reliable information are required. High-pressure xenon (HPXe) chambers have range of resolution and efficiency equivalent to those of other medium resolution detectors such as those using NaI(Tl), CdZnTe, and $LaBr_3:Ce$. An HPXe chamber could be a cost-effective alternative, assuming temperature stability and reliability. The CEA LIST actively studied and developed HPXe-based technology applied for environmental monitoring. Xenon purification and conditioning was performed. The design of a 4-L HPXe detector was performed to minimize the detector capacitance and the required power supply. Simulations were done with the MCNPX2.7 particle transport code to estimate the intrinsic efficiency of the HPXe detector. A behavioral study dealing with ballistic deficits and electronic noise will be utilized to provide perspective for further analysis.

Relaxed Axial Offset Control Strategy의 울진 1,2호기에 적용

  • 박현택;박재원;석기영;정선교;최태영;손상린
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.10a
    • /
    • pp.495-499
    • /
    • 1995
  • 울진 1,2호기 RSTR 수행 시 울진 1,2호기 기존의 $\Delta$I Band를 해석하기 위해 RAOC방법을 적용 사고 해석을 수행하였다. 먼저 Xenon reconstruction model을 사용 축 방향 Xenon 분포를 생산한 다음, 정상 운전 상태와Condition ll상태에서 생산된 xenon 분포에 의한 축 방향 출력 분포를 사용 $F_{Q}$와 DNBR을 계산, Design Limit와 비교 만족하는 새로운 $\Delta$I band를 결정하였다. 새로운 band는 기존의 Design Limit의 변화를 주지 않으면서 울진 발전소 기존의 $\Delta$I band를 포함하면서 운전상의 유연성 창상을 기하게 되었다.$\Delta$I band를 포함하면서 운전상의 유연성 창상을 기하게 되었다.다.

  • PDF

The effect of addition of noble gases on negative hydrogen ion production in a dc filament discharge

  • James, B.W.;Curran, N.P.;Hopkins, M.B.;Vender, D.
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.40-45
    • /
    • 1999
  • The effect of the addition of helium, neon, argon and xenon on the production of negative hydrogen ions has been studied in a magnetically confined dc filament discharge. The addition of helium and neon produced effects similar to an equivalent increase in hydrogen pressure. However, the addition of argon and low fractions of xenon produced significant increases in the negative ion density for hydrogen at pressures around 1 mTorr. The addition of argon and xenon, by increasing electron density and decreasing electron temperature, achieved conditions closer to optimum for negative ion production. The largest enhancement of negative hydrogen ion density occurred with the addition of argon; it is suggested that this is due to a resonant energy exchange between excited argon atoms and hydrogen molecules.

  • PDF

Properties of Electron Temperature and Density in Inductively Coupled Plasma of Xenon (유도결합형 제논 플라즈마의 전자온도, 밀도 특성)

  • Her, In-Sung;Yang, Jong-Kyung;Lee, Jong-Chan;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05b
    • /
    • pp.41-45
    • /
    • 2005
  • In this paper, parameters of electron temperature and density for the mercury-free lighting-source were measured to diagnosis and analyze in Xe based inductively coupled plasma(ICP). In results at several dependences of 20~100 mTorr Xenon pressure, 50~200W RF power and horizontal distribution were especially mentioned. When Xe pressure was 20mTorr and RF power was 200W, the electron temperature and density were respectively 3.58eV and $3.56{\times}10^{12}cm^{-3}$. The key parameters of Xe based ICP depended on Xe pressure more than RF power that could be verified. A high electron temperature and low electron density with a suitable Xe pressure are indispensible parameters for Xe based ICP lighting-source.

  • PDF

SECOND-ORDER SLIDING-MODE CONTROL FOR A PRESSURIZED WATER NUCLEAR REACTOR CONSIDERING THE XENON CONCENTRATION FEEDBACK

  • ANSARIFAR, GHOLAM REZA;RAFIEI, MAESAM
    • Nuclear Engineering and Technology
    • /
    • v.47 no.1
    • /
    • pp.94-101
    • /
    • 2015
  • This paper presents findings on the second-order sliding-mode controller for a nuclear research reactor. Sliding-mode controllers for nuclear reactors have been used for some time, but higher-order sliding-mode controllers have the added advantage of reduced chattering. The nonlinear model of Pakistan Research Reactor-1 has been used for higherorder sliding-mode controller design and performance evaluation. The reactor core is simulated based on point kinetics equations and one delayed neutron groups. The model assumes feedback from lumped fuel and coolant temperatures. The effect of xenon concentration is also considered. The employed method is easy to implement in practical applications, and the second-order sliding-mode control exhibits the desired dynamic properties during the entire output-tracking process. Simulation results are presented to demonstrate the effectiveness of the proposed controller in terms of performance, robustness, and stability.

A Neuro-Fuzzy Controller for Xenon Spatial Oscillations in Load-Following Operation

  • Na, Man-Gyun;Belle R. Upadhyaya
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.299-304
    • /
    • 1997
  • A neuro-fuzzy control algorithm is applied for xenon spatial oscillations in a pressurized water reactor. The consequent and antecedent parameters of the fuzzy rules are tuned by the gradient descent mettled. The reactor model used for computer simulations is a two-point xenon oscillation model. The reactor core is axially divided into two regions and each region has one input and one output and is coupled with the other region. The interaction between the regions of the reactor core is treated by a decoupling scheme. This proposed control of mettled exhibits very fast responses to a step or a ramp change of target axial offset without any residual flux oscillations.

  • PDF

A Test of the Aviation Obstacle Light and Structural Improvement (태양전지식 항공장애등 성능특성시험 및 구조개선)

  • Byun, Gang;Min, Byeong-Wook;Kim, Sae-Hyun;Lee, Dong-Il;Shin, Gu-Yong;Lee, Sung-Doo
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.442-444
    • /
    • 2003
  • For the safety of aircraft, aviation obstacle lights must be attached to the transmission towers in accordance with the governing law. Aviation obstacle lights which consist of solar cells, batteries. xenon lamps and a regulator substituted for aviation obstacle lights using AC power. A xenon lamp has advantage such as high brightness but also has disadvantage like large power consumption which cause lighting system to have many solar cells and batteries. This paper introduces an application of a aviation obstacle light using LED lamp through the economic analysis between LED lamp and xenon lamp.

  • PDF