• Title/Summary/Keyword: xenon

Search Result 282, Processing Time 0.023 seconds

Numerical simulation of a hall thruster for orbit transfer and correction of small satellites (소형위성의 궤도 천이 및 보정을 위한 홀 방식 전기추력기의 수치모사)

  • Seon Jong-Ho;Lee Jong-Sub;Lim Yu-Bong;Choe Won-Ho;Lee Hae-June
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.66-69
    • /
    • 2006
  • A two-dimensional Particle-In-Cell (PIC) simulation of a Hall thruster is presented. The thruster is being developed for orbit transfer and correction of a small satellite. Preliminary investigation of the simulation result finds well separated acceleration and ionization layers. The simulation further shows that collisional ionization of the xenon neutrals allows sufficient acceleration of the ionized plasmas that is adequate for the intended correction and transfer of small satellite orbits. Anticipated performance of the thruster based upon the present results will be calculated.

  • PDF

Development of Automated Surface Inspection System using the Computer V (컴퓨터 비젼을 이용한 표면결함검사장치 개발)

  • Lee, Jong-Hak;Jung, Jin-Yang
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.668-670
    • /
    • 1999
  • We have developed a automatic surface inspection system for cold Rolled strips in steel making process for several years. We have experienced the various kinds of surface inspection systems, including linear CCD camera type and the laser type inspection system which was installed in cold rolled strips production lines. But, we did not satisfied with these inspection systems owing to insufficient detection and classification rate, real time processing performance and limited line speed of real production lines. In order to increase detection and computing power, we have used the Dark Field illumination with Infra_Red LED, Bright Field illumination with Xenon Lamp, Parallel Computing Processor with Area typed CCD camera and full software based image processing technique for the ease up_grading and maintenance. In this paper, we introduced the automatic inspection system and real time image processing technique using the Object Detection, Defect Detection, Classification algorithms. As a result of experiment, under the situation of the high speed processed line(max 1000 meter per minute) defect detection is above 90% for all occurred defects in real line, defect name classification rate is about 80% for most frequently occurred 8 defect, and defect grade classification rate is 84% for name classified defect.

  • PDF

Photovoltaic Effects of Exciton Blocking Layer and Electrodes in Organic Semiconductor $CuPc/C_{60}$ ($CuPc/C_{60}$을 이용한 유기 광기전 소자에서 엑시톤 억제층과 전극 변화에 따른 광기전 특성 연구)

  • Hur, S.W;Oh, H.S.;Lee, W.J.;Lee, J.U.;Kim, T.W.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.112-115
    • /
    • 2004
  • Photovoltaic effects in $CuPc/C_{60}$ heterojunction structure have been studied depending on thickness of exciton blocking layer(BCP) and electrodes. Bare ITO and polymer coated electrode(PEDOT:PSS) were used as an anode, and Al, Ca/Al, Mg/Al, LiF/Al, and LiAl were used as a cathode. Photovoltaic parameters depending on BCP layer thickness from 0 to 60 nm and electrodes having different work function were measured using Keithley 236 source-measure unit and a 500W xenon lamp (ORIEL 66021). We have seen that the BCP layer thickness severely affects on the performance of photovoltaic cells.

  • PDF

Effects of Combined Environmental Factors on Mechanical and Thermal Analysis Properties of Graphite/Epoxy Composites (복합적인 환경인자가 탄소섬유강화 복합재의 기계적 및 열분석 특성에 미치는 영향)

  • Lee, Sang-Jin;Lee, Jong-Keun;Yoon, Sung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1416-1425
    • /
    • 2002
  • In this study, the effects of combined environmental factors on mechanical and thermal analysis properties of graphite/epoxy composites were evaluated by the use of an accelerated aging test. Environmental factors such as temperature, moisture. and ultraviolet were considered. A xenon-arc lamp was utilized for ultraviolet light. and exposure times of up to 3000 hours were applied. Several types of specimens - tensile. bending, and shear specimens those are transverse to the fiber direction, and bending specimens those are parallel to the tiber direction - were used to investigate the effects of environmental factors on mechanical properties of the composites. Also, glass transition temperature, storage shear modulus, loss shear modulus, and tan ${\delta}$ were measured as a function of exposure times through a dynamic mechanical analyzer. In addition. a suitable testing method for determining the effect of environmental factors on mechanical properties is suggested by comparing the results from using two different types of strain measuring sensors. Finally, composite surfaces exposed to environmental factors were examined using a scanning electron microscope.

Aging Characteristics of Glass Fabric/Phenolic Composites for Tilting Train Using Accelerated Aging Tester (가속노화시험장치를 적용한 틸팅열차용 유리섬유직물/페놀릭 복합재의 노화특성 평가)

  • Yoon Sung-Ho;Nam Jung-Pyo;Hwang Young-Eun;Lee Sang-Jin;Shin Kwang-Bok
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.2
    • /
    • pp.188-194
    • /
    • 2005
  • Aging characteristics of glass fabric/phenolic composites for tilting train subjected to combined environmental aging factors were investigated. A 2.5KW accelerated aging tester with a xenon-arc lamp was used to provide environmental aging factors such as temperature, moisture, and ultraviolet. A series of aging tests were conducted up to 3000 hours and several types of specimens were prepared along the warp direction and the fill direction. Mechanical degradations for tensile, flexural, and shear properties were evaluated as a function of exposure times through a material testing system. Thermal analysis properties such as storage shear modulus, loss shear modulus, and tan 3 were measured through a dynamic mechanical analyzer. Finally exposed surfaces of the composites were examined using a scanning electron microscope. According to the experimental results, mechanical properties and thermal analysis properties of glass fabric/phenolic composites were found to be slightly degraded as a function of exposure times due to combined environmental effects.

Conceptual Core Design of 1300MWe Reactor for Soluble Boron Free Operation Using a New Fuel Concept

  • Kim, Soon-Young;Kim, Jong-Kyung
    • Nuclear Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.391-400
    • /
    • 1999
  • A conceptual core design of the 1,300MWe KNGR (Korean Next Generation Reactor) without using soluble boron for reactivity control was developed to determine whether it is technically feasible to implement SBF (Soluble Boron Free) operation. Based on the borated KNGR core design, the fuel assembly and control rod configuration were modified for extensive use of burnable poison rods and control rods. A new fuel rod, in which Pu-238 had been substituted for a small amount of U-238 in fuel composition, was introduced to assist the reactivity control by burnable poison rods. Since Pu-238 has a considerably large thermal neutron capture cross section, the new fuel assembly showed good reactivity suppression capability throughout the entire cycle turnup, especially at BOC (Beginning of Cycle). Moreover, relatively uniform control of power distribution was possible since the new fuel assemblies were loaded throughout the core. In this study, core excess reactivity was limited to 2.0 %$\delta$$\rho$ for the minimal use of control rods. The analysis results of the SBF KNGR core showed that axial power distribution control can be achieved by using the simplest zoning scheme of the fuel assembly Furthermore, the sufficient shutdown margin and the stability against axial xenon oscillations were secured in this SBF core. It is, therefore, concluded that a SBF operation is technically feasible for a large sized LWR (Light Water Reactor).

  • PDF

THE BENCHMARK CALCULATIONS OF THE GAMMA+ CODE WITH THE HTR-10 SAFETY DEMONSTRATION EXPERIMENTS

  • Jun, Ji-Su;Lim, Hong-Sik;Lee, Won-Jae
    • Nuclear Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.307-318
    • /
    • 2009
  • KAERI (Korea Atomic Energy Research Institute) has developed the GAMMA+ code for a thermo-fluid and safety analysis of a VHTR (Very High Temperature Gas-Cooled Reactor). A key safety issue of the VHTR design is to demonstrate its inherent safety features for an automatic reactor power trip and power stabilization during an anticipated transient without scram (ATWS) accident such as a loss of forced cooling by a trip of the helium circulator (LOFC) or a reactivity insertion by a control rod withdrawal (CRW). This paper intends to show the ATWS assessment capability of the GAMMA+ code which can simulate the reactor power response by solving the point-kinetic equations with six-group delayed neutrons, by considering the reactivity changes due to the effects of a core temperature variation, xenon transients, and reactivity insertions. The present benchmark calculations are performed by using the safety demonstration experiments of the 10 MW high temperature gas cooled-test module (HTR-10) in China. The calculation results of the power response transients and the solid core temperature behavior are compared with the experimental data of a LOFC ATWS test and two CRW ATWS tests by using a 1mk-control rod and a 5mk-control rod, respectively. The GAMMA+ code predicts the power response transients very well for the LOFC and CRW ATWS tests in HTR-10.

Photovoltaic Properties of Organic Photovoltaic cell (유기물을 이용한 Photovoltaic cell의 광기전력 특성)

  • Kim, S.K.;Lee, H.D.;Chung, D.H.;Oh, H.S.;Hong, J.I.;Park, J.W.;Kim, T.W.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.123-126
    • /
    • 2003
  • Recently, there is a growing concern on the photovoltaic effects using organic materials. This is a phenomena which converts the solar energy into the electrical one. We have fabricated a device structure of $ITO/PEDOT:PSS/CuPc/C_{60}/BCP/AI$. The PEDOT:PSS layer is made by spin coating, and the other organic layers are made by thermal vapor deposition. By measuring the current-voltage characteristics with an illumination of light, we have obtained value of Voc=0.38V, Jsc=$0.5mA/cm^{2}$. And a fill factor and efficiency are about 0.314 and 0.083%, respectively. A 500W xenon lamp(ORIEL) is used for a light source, and the light intensity illuminated into the device was about 10mW.

  • PDF

A Study on the Measurement of Museum Exhibit's Color Change by Lighting (조명에 의한 박물관 전시물의 변색 측정에 관한 연구)

  • Kim, Hoon;Kim, Hong-Bum
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.10 no.5
    • /
    • pp.43-51
    • /
    • 1996
  • An appropriate lighting standard for the museum is needed to minimize the deterioration of the exhibits by the light. To obtain the basic data for the standard, a system to measure the color change of the artifacts as a function of the radiation energy frequency was constructed. Xenon lamp is used as a light source, and the light is irradiated to the samples through serveral cut-off filters. Measuring the colors of the samples under each filters, color change of the samples is estimated for each frequency ranges of radiation energy. As a result, natural dyes show severe color change in a short time, but traditional papers shows relatively small color change. Using measured results, color change due to other light sources can be calculated and this will be the base of the standard.

  • PDF

Experimental Analysis of the Ground Take-off Flight of a Butterfly (지면이륙하는 나비의 날개짓 분석)

  • Jang, Young-Il;Lee, Sang-Joon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.142-143
    • /
    • 2008
  • In the present work, high-speed video images of the ground take-off flight of a live butterfly were captured and their dynamic motions during the first full-stroke were analyzed. To capture the dynamic images of the take-off motion, the experimental setup consisted of a high-speed camera, a Xenon lamp as a light source and a transparent chamber of $15^W{\times}15^L{\times}17^H$ $cm^3$ in physical size. The ambient temperature and supplementary lighting devices were precisely controlled. The weight and wing span of the butterfly tested in this study was 104 mg and 63.14 mm, respectively. The ground take-off images were captured with 4000 fps with a spatial resolution of (1024${\times}$512) pixels. The period of the first full-stroke was 80.5ms and the flapping speed of downstroke was 2 times faster than that of upstroke. As a result, butterflies used the fling and near-clap motion to generate lifting force and an interesting take-off behavior of early pronation and downstroke was observed.

  • PDF