• Title/Summary/Keyword: xanthine oxidase inhibitor

Search Result 41, Processing Time 0.031 seconds

Conversion of Myocardial Xanthine Oxidase in Ischemic Heart of Rat (허혈심근 Xanthine Oxidase 의 전환에 관한 연구)

  • 박창권
    • Journal of Chest Surgery
    • /
    • v.21 no.5
    • /
    • pp.803-815
    • /
    • 1988
  • The present experiments were performed to confirm the hypothesis that xanthine oxidase[XOD], as a source and mechanism of oxygen radical production, plays an important role in the genesis of the reperfusion injury of ischemic myocardium. The experimental ischemic-reperfusion injury was induced in isolated, Langendorff preparations of rat hearts by 60 min. Of global ischemia with aortic clamping followed by 20 min. of reperfusion with oxygenated Krebs-Henseleit solution[pH 7.4, 37*C]. The results were as follows: 1. The releases of creatine phosphokinase and a lipid peroxidation product, malondialdehyde[MDA] into the coronary effluent were abruptly increased upon reperfusion of ischemic hearts. The increases of the enzyme and MDA were suppressed significantly in the hearts removed from rats pretreated with allopurinol, a specific XOD inhibitor[20mg/kg, oral, 24 hrs and 2 hrs before study]. This effect of allopurinol was comparable to that of oxygen radical scavengers, superoxide dismutase[5, 000U] and catalase[12, 500 U]. 2. The increased SOD-inhibitable reduction of ferricytochrome C, which was infused to the hearts starting with reperfusion, was significantly suppressed in allopurinol pretreated hearts. 3. Activities of myocardial XOD were compared in the normal control hearts and the ischemic ones. Total enzyme activities were not different in both hearts. However, comparing with the control, the ischemic ones showed higher activity in 0-form and lower activities in D-form and D/O-form. 4. In the ischemic hearts, phenylmethylsulfonyl fluoride, a serine protease inhibitor, prevented significantly the increase of 0-form and the decreases of D and D/O-form, while thiol reagents did not affect the changes of the enzyme. 5. The increase of 0-form and the decreases of D and D/0-form were not significant in both calcium-free perfused and pimozide, a calmodulin inhibitor, treated ischemic hearts. 6. The SOD-inhibitable reduction of ferricytochrome C were suppressed by PMSF and pimozide treatment as well as by calcium-free perfusion. It is suggested from these results that in the ischemic rat myocardium, xanthine oxidase is converted to oxygen radical producing 0-form by calcium, calmodulin-dependent proteolysis and plays a contributing role in the genesis of ischemic-reperfusion injury by producing oxygen free radicals.

  • PDF

Antioxidant Activity and Biological Properties in Extracts of Euonymus alatus (Thnub.) Sieb. (화살나무 추출물의 항산화 활성 및 생물학적 특성)

  • 서경수;임종국;박재호;김충현;정규영;정형진
    • Journal of Life Science
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • Antioxidant activity and biological properties in the MeOH extracts from different plant parts of Euonymus alatus (THNUB.) were measured by DPPH free radical scavenging ability and inhibition ability against xanthine/xanthine oxidase and proliferation in HL-60 cells. DPPH free radical scavenging activities in extracts of plant parts were high such as leaf, wing, root, seed and stem, respectively. The EtOAc fractions of plant parts were purified through LH-20 column chromatography and identified by GC/MS. LH-4 fraction and LH-5 fraction of leaf, stem and root showed stronger activities than other fractions in the inhibitor activity of DPPH and xanthine/ xanthine oxidase. $IC_{50}$ values of LH-4 fraction eluted from stem extracts showed such as 2.38 and 5.32 in DPPH and xanthine/ xanthine oxidase assay. Polyphenolic compounds were identified in purified LH-20 fractions showed highest $IC_{50}$ value in DPPH and xanthine/xanthine oxidase assay The activity of POD according to sampling time was high in root harvested in May and leaf harvested in September, respectively. The activity of SOD showed only in the extracts of stem in plant parts. SOD and POD in leaf were similar in the patterns of isozyme to those of stem. The purified extracts from Euonymus alatus (THNUB.) exerted inhibition ability of proliferation in HL-60 cells.

Lignans with NADPH Oxidase 2 (NOX2)-inhibitory Activity from the Fruits of Schisandra chinensis

  • Park, Jung-Min;Pel, Pisey;Chin, Young-Won;Lee, Moo-Yeol
    • Natural Product Sciences
    • /
    • v.24 no.1
    • /
    • pp.59-65
    • /
    • 2018
  • An isoform of NADPH oxidase (NOX), NOX2 is a superoxide-generating enzyme involved in diverse pathophysiological events. Although its potential as a therapeutic target has been validated, there is no clinically available inhibitor. Herein, NOX2-inhibitory activity was screened with the constituents isolated from Schisandra chinensis, which has been reported to have antioxidant and reactive oxygen species (ROS)-scavenging effects. Among the partitions prepared from crude methanolic extract, a chloroform-soluble partition showed the highest NOX2-inhibitory activity in PLB-985 cell-based NOX2 assay. A total of twenty nine compounds (1 - 29) were identified from the chloroform fraction, including two first isolated compounds; dimethyl-malate (25) and 2-(2-hydroxyacetyl) furan (27) from this plants. Of these constituents, two compounds (gomisin T, and pregomisin) exhibited an NOX2-inhibitory effect with the $IC_{50}$ of $9.4{\pm}3.6$, and $62.9{\pm}11.3{\mu}M$, respectively. They are confirmed not to be nonspecific superoxide scavengers in a counter assay using a xanthine-xanthine oxidase system. These findings suggest the potential application of gomisin T (6) and other constituents of S. chinensis to inhibit NOX2.

Effect of Xanthine Oxidase Inhibitor on Cerebral Hypoxia-Ischemia in Neonatal Rats (Xanthine Oxidase Inhibitor가 저산소성-허혈성 뇌손상이 유도된 신생쥐에 미치는 영향)

  • Choi, Dae-Ho;Oh, Yeon-Kyun;Park, Seung-Tak
    • Clinical and Experimental Pediatrics
    • /
    • v.45 no.6
    • /
    • pp.732-742
    • /
    • 2002
  • Purpose : In order to evaluate the hypoxia-ischemia(H-I) induced neurotoxicity and the protective effect of xanthine oxidase(XO) inhibitor(allopurinol), cell number, cell viability, lactate dehydrogenase(LDH), protein synthesis(PS) and protein kinase C(PKC) activity were measured in cerebral neurons and astrocytes. Methods : Cytotoxic effect was measured by in vitro assay at 12-72 hours after H-I on cerebral neurons and astrocytes derived from 7-day old neonatal rats which were subjected to unilateral common carotid artery occlusion and exposed to hypoxic condition for 3 hours. The protective effect of XO inhibitor was examined by the cell number, cell viability, LDH and PS on 14 days after H-I with allopurinol intraperitoneal injection 15 minutes prior to H-I. In addition, the effect of allopurinol on PKC activity in hypoxic conditions was examined in neurons. Results : 72 hours from H-I, the cell numbers and viability were decreased significantly in time-dependent manner on neurons and those of astrocytes also decreased slightly, compared with control. In neonatal rats treated with H-I, the cell number, cell viability, and PS in neurons were decreased, but LDH was increased significantly compared with control. In neonatal rats pretreated with allopurinol, the cell number and viability, and PS in neurons were increased and LDH was decreased significantly compared with H-I. PKC was increased remarkably after hypoxic condition. But PKC was decreased significantly against hypoxic condition after allopurinol pretreatment. Conclusion : From these results, it is suggested that H-I is more toxic in neurons than astrocytes and allopurinol is very protective with increasing of PS, and decreasing of LDH and PKC in neurons from hypoxic-ischemic condition.

Effects of Allopurinol on the Growth and Metabolism of Allantoin in Chinese Cabbage Seedlings (배추 유식물의 생장과 Allantoin대사에 미치는 Allopurinol의 효과)

  • 박윤일
    • Journal of Plant Biology
    • /
    • v.30 no.2
    • /
    • pp.95-108
    • /
    • 1987
  • Effects of allopurinol (2mM), a specific inhibitor of xanthine oxidase, on the growth and metabolism of llantoin in dark grown Chinese cabbage (Brassica campestris L.) seedlings were investigated. Allopurinol treatment maintained the fresh and dry weights of cotyledons at higher levels, but inhibited the elongation of hypocotyls and roots of the seedlings. Total nitrogen content in the cotyledons decreased at slower rate by allopurinol. Accordingly, the levels of total nitrogen contents in the hypocotyls and roots, were depressed by the inhibitor. In the cotyledons, allopurinol began to elevate RNA levels after day 3, which it did not affect DNA level throughout the experiment. Activities of xanthine oxidase (XO:EC 1.2.3.2), uricase (UO:EC 1.7.3.3) and allantoinase (AL:EC 3.5.2.5) in the cotyledons were examined. The activity of XO was not detected, but the accumulation of xanthine by allopurinol treatment presented an indirect evidence of the existence of XO in the organ. Allopurinol kept UO activity high up to day 2 after sowing and depressed AL activity throughout the experiment. By allopurinol treatment, allantoin content was kept high over the control both in cotyledons and roots, but it was kept low in hypocotyls. The level of allantoic acid in the 3 organs were shown to be depressed by allopurinol. These results suggest that allantoin and allantoic acid produced by the degradation of stored and newly synthesized RNA are transported from the storage tissue to hypocotyls and roots as important nitrogen sources for the development of Chinese cabbage seedlings.

  • PDF

Inhibitor of Xanthine Oxidase from Onion Skin (양파 껍질에서 분리한 Xanthine Oxidase 저해물질)

  • Ra, Kyung-Soo;Chung, Soo-Hyun;Suh, Hyung-Joo;Son, Jong-Youn;Lee, Hyo-Ku
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.697-701
    • /
    • 1998
  • Two major flavonoid compounds having inhibition activity of xanthine oxidase from onion skin were separated, isolated and identified by ODS chromatography, Sephadex LH-20 chromatography, UV/visible absorption spectroscopy and FAB Mass. Spectral analyses indicated that $F_1$ was a flavonol having 3,5,7,3'-OH and 4'-glucoside (quercetin 4'-glucoside), and $F_2$ was a flavonol having 3(5),7,3',4'-OH (quercetin). FAB-Mass of fraction $F_1\;and\;F_2$ in positive-ion-mode produced a spectra containing main ions at m/z 465, corresponding to the $(M+H)^+$ ion of quercetin 4'-glucoside, and m/z 303, corresponding to the $(M+H)^+$ ion of quercetin. The inhibition mechanisms of $F_1\;and\;F_2$ were a mixture of the uncompetative and non-competative modes, with respect to xanthine as a substrate.

  • PDF

Inhibitory Effect of Flavan-3-ols Isolated from Oolong Tea on Xanthine Oxidase (우롱차로부터 분리된 Flavan-3-ol 화합물의 Xanthine Oxidase에 대한 저해 영향)

  • An, Bong-Jeun;Bae, Man-Jong;Choi, Chung
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.1084-1088
    • /
    • 1996
  • As a series of study for an anti-gout agent, two flavan-3-ols have been isolated from Oolong tea. They showed positive reaction in $anisaldehyde-H_2SO_4$ solution and $FeCl_3$, which were able to be confirmed in TLC with dimeric flavan-3-ols. The components were identified as procyanidin B-2 and procyanidin B-2-O-3, 3'-di-gallate by spectroscopic analysis. Their inhibitory effect on xanthine oxidase was also investigated and procyanidin B-2-O-3, 3'-digallate showed 60.6% inhibition at $50\;{\mu}mole$. The compound competitively inhibited the xantine oxidase and dimeric flavan-3-ols contanining gallate had higher inhibition activity.

  • PDF

Comparison of Organic Acid Contents and Xanthine Oxidase Inhibitory Activities of Commercial Fruit Juices and Vinegars (시판 과일 주스와 식초의 유기산 함량과 Xanthin Oxidase 저해 활성 비교)

  • Hwang, Ji-Young;Pyo, Young-Hee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.11
    • /
    • pp.1685-1690
    • /
    • 2016
  • Xanthine oxidase (XO) inhibitors play an important role in the treatment of gout and many other diseases related to superoxide anion metabolism. In this study, four commercial fruit juices and three vinegars were evaluated for their inhibitory activity of XO (XOI), as well as contents of organic acids by HPLC with UV detection. Five different organic acids were detected in commercial samples: acetic acid and malic acid were the most prominent in vinegars and fruit juices, respectively. The vinegars showed high XOI activity (33.8~64.9%) related to the great concentration of acetic acid ($R^2=0.7192$). The presence of acetic acid in vinegar could be responsible for its XOI effect.

Glucose and Its Role in Generating Reactive Oxygen Species Required for Mouse Sperm Fertilizing Ability

  • Lin, S.C.;Chen, M.C.;Huang, A.J.;Salem, B.;Li, K.C.;Chou, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.6
    • /
    • pp.748-756
    • /
    • 2000
  • Effects of xanthine (X), xanthine oxidase (XO), and catalase (C), $H_2O_2$, and carbohydrates on sperm capacitation, acrosome reaction, and fertilizing ability in vitro were examined. Glucose alone, but not fructose, supported the maximum rate of sperm capacitation and acrosome reaction. However, in the combination of X, XO, and C (XXOC) or $H_2O_2$, fructose alone also supported maximum capacitation, acrosome reaction, and fertilization. Either insufficient or excessive amounts of $H_2O_2$ decreased sperm capacitation and the acrosome reaction. In order to understand how glucose generates $H_2O_2$ or other reactive oxygen species in sperm cells, 6-aminonicotinamide, an inhibitor of the pentose-phosphate pathway (PPP), and apocynin, an inhibitor of NADPH oxidase, were added to sperm suspensions in glucose-containing medium. Results appeared that sperm capacitation, acrosome reaction, and fertilization were consequently inhibited by either one of these compounds. These inhibitory effects were nullified by addition of XXOC. These results support the hypothesis that glucose, in addition to being a substrate for glycolysis, facilitates sperm capacitation and the acrosome reaction by generating reactive oxygen species through G-6-P dehydrogenase and NADPH oxidase.

Role of microglial activation on neuronal excitability in rat substantia gelatinosa

  • Park, Areum;Chun, Sang Woo
    • International Journal of Oral Biology
    • /
    • v.45 no.4
    • /
    • pp.225-231
    • /
    • 2020
  • Glial cells, including astrocytes and microglia, interact closely with neurons and modulate pain transmission, particularly under pathological conditions. In this study, we examined the excitability of substantia gelatinosa (SG) neurons of the spinal dorsal horn using a patch clamp recording to investigate the roles of microglial activation in the nociceptive processes of rats. We used xanthine/xanthine oxidase (X/XO), a generator of superoxide anion (O2·-), to induce a pathological pain condition. X/XO treatment induced an inward current and membrane depolarization. The inward current was significantly inhibited by minocycline, a microglial inhibitor, and fluorocitrate, an astrocyte inhibitor. To examine whether toll-like receptor 4 (TLR4) in microglia was involved in the inward current, we used lipopolysaccharide (LPS), a highly specific TLR4 agonist. The LPS induced inward current, which was decreased by pretreatment with Tak-242, a TLR4-specific inhibitor, and phenyl N-t-butylnitrone, a reactive oxygen species scavenger. The X/XO-induced inward current was also inhibited by pretreatment with Tak-242. These results indicate that the X/XO-induced inward current of SG neurons occurs through activation of TLR4 in microglial cells, suggesting that neuroglial cells modulate the nociceptive process through central sensitization.