• Title/Summary/Keyword: x-선 반사

Search Result 102, Processing Time 0.036 seconds

X-Ray Resonant Magnetic Scattering Study of Magnetic Structures and Magnetic Switching Mechanism in Magnetic Multilayers and Nanostructures (엑스선 공명 자기 산란을 이용한 자성 다층박막 및 나노 구조체의 자기 구조와 자기 스위칭 메커니즘의 연구)

  • Lee, Dong-Ryeol
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.4
    • /
    • pp.160-166
    • /
    • 2010
  • X-ray resonant magnetic scattering (XRMS) allows us to extract magnetic depth profiles in magnetic multilayers and magnetization distribution in magnetic nanostructures in element-specific manner using x-ray reflectivity and diffraction. XRMS is explained with a brief introduction and examples of magnetic structures and magnetic switching mechanism in magnetic multilayers and nanostructures.

The design of the optical film for absorbent ARAS coating (흡수층을 이용한 무반사, 무정전용 광학박막의 설계)

  • Park, M.C.;Son, Y.B.;Jung, B.Y.;Lee, I.S.;Hwangbo, C.K.
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.5 no.1
    • /
    • pp.7-11
    • /
    • 2000
  • The anti-reflective anti-static (ARAS) optical film is designed using absorbent materials such as ITO, $TiN_xW_y$, Ag by Essential Macleod program. [air ${\mid}TiN_xW_y{\mid}SiO_2{\mid}$ glass] two layer shows wide-band AR coating in the wavelength range of 450~700 nm. The reflectivity, transmittance of this coating are below 0.5%, about 75%, respectively. [air $SiO_2{\mid}TiO_2{\mid}SiO_2{\mid}$, ITO glass] layer can adjust reflectance of below 0.5% with above 97% transmittance. In the [air ${\mid}SiO_2{\mid}TiO_2{\mid}SiO_2{\mid}$ Ag glass] layer, the transmission can be controlled at above 96% with reflectance of 1~2%.

  • PDF

Coherent x-ray scattering to study dynamics in thin films (결맞는 X-선 산란을 이용한 박막의 표면 거동 연구)

  • Kim, Hyun-Jung
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.3
    • /
    • pp.143-146
    • /
    • 2005
  • A new method of x-ray photon correlation spectroscopy (XPCS) using coherent x-rays is developed recently for probing the dynamics of surface height fluctuations as a function of lateral length scale. This emerging technique applies the principles of dynamic light scattering in the x-ray regime. The short wavelength and slow time scales characteristic of XPCS extend the phase space accessible to scattering studies beyond some restrictions by light and neutron. In this paper, we demonstrate XPCS to study the dynamics of surface fluctuations in thin supported polymer films. We present experimental verification of the theoretical predictions for the wave vector and temperature dependence of the capillary wave relaxation times for the supported polymer films at melt for the film thicknesses thicker than 4 times of the radius of gyration of polymer. We observed a deviation from the conventional capillary wave predictions in thinner films. The analysis will be discussed in terms of surface tension, viscosity and effective interactions with the substrate.

Relative quantitative evaluation of mechanical damage layer by X-ray diffuse scattering in silicon wafer surface (실리콘 웨이퍼 표면에서 X-선 산만산란에 의한 기계적 손상층의 상대 정량 평가)

  • 최치영;조상희
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.4
    • /
    • pp.581-586
    • /
    • 1998
  • We investigated the effect of mechanical back side damage in Czochralski grown silicon wafer. The intensity of mechanical damage was evaluated by minority carrier recombination lifetime by laser excitation/microwave reflection photoconductivity decay method, degree of X-ray diffuse scattering, X-ray section topography, and wet oxidation/preferential etching methods. The data indicate that the higher the mechanical damage intensity, the lower the minority carrier lifetime, and the magnitude of diffuse scattering and X-ray excess intensity increased proportionally, and it was at Grade 1:Grade 2:Grade 3=1:7:18.4 that the normalized relative quantization ratio of excess intensity in damaged wafer was calculated, which are normalized to the excess intensity from sample Grade 1.

  • PDF

Atomic Layer Deposition of Ruthenium Thin Film from Ru (cymene) (1,5-hexadiene) and O2

  • Jeong, Hyo-Jun;Jeong, Eun-Ae;Han, Jeong-Hwan;Park, Bo-Geun;Lee, Seon-Suk;Hwang, Jin-Ha;Kim, Chang-Gyun;An, Gi-Seok;Jeong, Taek-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.357.2-357.2
    • /
    • 2014
  • Ruthenium (Ru) 박막은 우수한 화학적 열적 안정성 및 높은 일함수(4.7eV) 특성으로 인해 20 nm급 이하의 차세대 DRAM capacitor의 전극 물질 및 Cu metalization을 위한 seed layer로 각광을 받고 있다. Ru박막의 나노스케일 정보전자소자로의 적용을 위해서는 두께제어가 용이하고 3D 구조에서 우수한 단차 피복 특성을 갖는 atomic layer deposition (ALD)을 이용한 박막 형성이 필수적이다. 이에 본 연구에서는 ALD 방법을 이용하여 0가의(cymene) (1,5-hexadiene) Ru (0) (C16H24Ru) 전구체를 합성, ALD 방법을 이용하여 우수한 초기성장거동을 갖는 Ru 박막을 증착 하였다. 형성된 Ru 박막의 표면 형상, 두께, 밀도를 주사전자현미경(Scanning electron microscopy)과 X-선 반사율 측정(X-ray reflectometer)으로 조사하였다. 또한 전기적 특성을 4침법(four-point-probe)으로 측정하였고, 박막의 화학적 조성과 결정성의 정보를 X-선 광전자분광법(X-ray photoelectron spectroscopy)과 X-선 회절(X-ray diffraction)을 이용하여 확인하였다.

  • PDF

Effect of mechanical backside damage upon minority carrier recombination lifetime measurement by laser/microwave photoconductance technique (기계적 후면 손상이 레이저/극초단파 광전도 기법에 의한 소수 반송자 재결합 수명 측정에 미치는 영향)

  • 조상희;최치영;조기현
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.5 no.4
    • /
    • pp.408-413
    • /
    • 1995
  • We investigated the effect of mechanical backside damage upon minority carrier recombination lifetime measurement in Czochralski silicon substrate by laser excitation/microwave reflection photoconductance decay method. The intensity of mechanical damage was evaluated by X-ray double crystal rocking curve, X-ray section topography and wet oxidation/preferential etch methods. The data indicate that the higher the mechanical damage intensity, the lower the minority carrier lifetime, and the threshold full width at half maximum value which affect minority carrier lifetime measurement is about 13 secs.

  • PDF

A New X-Ray Image Sensor Utilizing a Liquid Crystal Panel (새 구조의 액정 엑스선 감지기)

  • Rho, Bong-Gyu
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.4
    • /
    • pp.249-254
    • /
    • 2008
  • We developed a new x-ray image sensor utilizing a reflection-mode liquid crystal panel as its sensitive element, and tested its functionality by using it to obtain an x-ray image of a printed circuit board. In the liquid crystal x-ray image sensors hitherto reported, the liquid crystal layer is in direct contact with the photoconductive film which is deposited on a glass substrate. In the fabrication of the new x-ray image sensor, a liquid crystal panel is fabricated in the first step by using a pair of glass plates of a few centimeters thicknrss. Then one of the glass substrates is ground until its thickness is reduced to about $60\;{\mu}m$. After polishing the glass plate, dielectric films for high reflectance at 630 nm, a film of amorphous selenium for photoconduction, and a transparent conductive film for electrode are deposited in sequence. The new x-ray image sensor has several merits: primarily, fabrication of a large area sensor is more easily compared with the old fashioned x-ray image sensors. Since the reflection type liquid crystal panel has a very steep response curve, the new x-ray sensor has much more sensitivity to x-rays compared with the conventional x-ray area sensor, and the radiation dosage can be reduced down to less then 20%. By combining the new x-ray sensor with CCD camera technology, real-time x-ray images can be easily captured. We report the structure, fabrication process and characteristics of the new x-ray image sensor.

표면 분석기술의 반도체 응용 (II)-SEM 을 이용한 분석기술

  • Baek, Mun-Cheol
    • ETRI Journal
    • /
    • v.10 no.1
    • /
    • pp.53-63
    • /
    • 1988
  • SEM은 전자현미경의 고배율 관찰 기능으로부터 여러가지 분석기능을 부착한 분석장비로서 그 영역을 확장하고 있다. 전자선과 시료의 반응으로부터 발생하는 각종 신호, 즉 X- 선이나 2차 전자 및 반사전자 등을 검출하여 확대상의 형성 이외에 성분분석을 행할 수 있다. 여기에서는 이러한 기능을 나타내기 위한 SEM의 구조와 기본 원리에 대해 조사하였고 검출된 신호를 처리하는 여러 기술을 언급하였다. 그리고 반도체 재료의 분석을 위하여 SEM 및 관련된 분석기술의 중요성과 방향 등을 언급하였다.

  • PDF