• Title/Summary/Keyword: x선 영상기법

Search Result 32, Processing Time 0.018 seconds

Hydraulic Conductivity and Microscopic Analysis of Fly Ash Liner (플라이애쉬 혼합차수재의 투수특성과 미세구조 분석)

  • Jeong, Mun-Gyeong;Seo, Gyeong-Won;Lee, Yong-Su
    • Geotechnical Engineering
    • /
    • v.14 no.1
    • /
    • pp.109-126
    • /
    • 1998
  • The use of fly ash as a contaminant barrier material was studied. Mixing ratio of fly ash to bentonite to meet the requirements for landfill liners was determined. The hydraulic behavior exhibited by the fly ash-bentonite liner and the effects of CaO were investigated through hydraulic conductivity tests under various conditions and microscopic analyses including XRD, SEM, helium porosimetry, and image analysis. The hydraulic conductivity of compacted fly ash decreased with the addition of bentonite, which was due mainly to the expanding of bentonite and partly to the filling of voids by chemical reaction products among constituents of the artificial liner. Because of insufficient CaO content, and rich in content but low-reactive $SiO_2$ contained in the fly ashes used, pozzolanic reaction and resulting effects in the artificial liner were not significant. The reactions among constituting materials and their resulting effects on hydraulic conductivity were controlled not by the apparent amounts of each constituent, but by reaction activities of the materials in the artificial liner.

  • PDF

Mineral Composition and Grain Size Distribution of Fault Rock from Yangbuk-myeon, Gyeongju City, Korea (경주시 양북면 단층암의 광물 조성과 입도 분포 특징)

  • Song, Su Jeong;Choo, Chang Oh;Chang, Chun-Joong;Chang, Tae Woo;Jang, Yun Deuk
    • Economic and Environmental Geology
    • /
    • v.45 no.5
    • /
    • pp.487-502
    • /
    • 2012
  • This paper is focused on mineral compositions, microstructures and distributional characters of remained grains in the fault rocks collected from a fault developed in Yongdang-ri, Yangbuk-myeon, Gyeongju City, Korea, using X-ray diffraction (XRD), optical microscope, laser grain size analysis and fractal dimension analysis methods. The exposed fault core zone is about 1.5 meter thick. On the average, the breccia zone is 1.2 meter and the gouge zone is 20cm thick, respectively. XRD results show that the breccia zone consists predominantly of rock-forming minerals including quartz and feldspar, but the gouge zone consists of abundant clay minerals such as chlorite, illite and kaolinite. Mineral vein, pyrite and altered minerals commonly observed in the fault rock support evidence of fault activity associated with hydrothermal alteration. Fractal dimensions based on box counting, image analysis and laser particle analysis suggest that mineral grains in the fault rock underwent fracturing process as well as abrasion that gave rise to diminution of grains during the fault activity. Fractal dimensions(D-values) calculated by three methods gradually increase from the breccia zone to the gouge zone which has commonly high D-values. There are no noticeable changes in D-values in the gouge zone with trend being constant. It means that the bulk-crushing process of mineral grains in the breccia zone was predominant, whereas abrasion of mineral grains in the gouge zone took place by continuous fault activity. It means that the bulk-crushing process of mineral grains in the breccia zone was predominant, whereas abrasion of mineral grains in the gouge zone took place by continuous fault activity. Mineral compositions in the fault zone and peculiar trends in grain distribution indicate that multiple fault activity had a considerable influence on the evolution of fault zones, together with hydrothermal alteration. Meanwhile, fractal dimension values(D) in the fault rock should be used with caution because there is possibility that different values are unexpectedly obtained depending on the measurement methods available even in the same sample.