• Title/Summary/Keyword: woven matrix

Search Result 70, Processing Time 0.023 seconds

Material Property Characterization Method and Experimental Measurement of the Effective Thermal Conductivities of Woven Fabric Composite Materials (직물 복합재료의 물성치 특성화 기법 및 실험적 계측)

  • Moon, Young-Kyu;Goo, Nam-Seo;Kim, Cheol;Woo, Kyung-Sik
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.64-69
    • /
    • 2001
  • In general, laminate effective orthotropic thermal conductivities are dependent on fiber and matrix material properties, fiber volume fraction and fabric geometric parameters. This paper deals with the predicting method of the transverse and the in-plane thermal conductivities of plain weave fabric composites based on the three dimensional series-parallel thermal resistance network. Thermal resistance network was applied to unit cell model that characterizes the periodically repeated pattern of plain weave. Also, an experiment apparatus is setup to measure the thermal conductivities of composite material. The numerical and experimental results of carbon/epoxy plain weave are compared.

  • PDF

Effect of molding condition on tensile properties of hemp fiber reinforced composite

  • Takemura, K.;Minekage, Y.
    • Advanced Composite Materials
    • /
    • v.16 no.4
    • /
    • pp.385-394
    • /
    • 2007
  • In this study, the effect of molding condition on the tensile properties for plain woven hemp fiber reinforced green composite was examined. The tensile properties of the composite were compared with those of the plain woven jute fiber composite fabricated by the same process. Emulsion type biodegradable resin or polypropylene sheet was used as matrix. The composites were processed by the compression molding where the molding temperature and its heating time were changed from 160 to $190^{\circ}C$ and from 15 to 25 min, respectively. The following results were obtained from the experiment. The tensile property of hemp fiber reinforced polypropylene is improved in comparison with polypropylene bulk. The strength of composite is about 2.6 times that of the resin bulk specimen. Hemp fiber is more effective than jute fiber as reinforcement for green composite from the viewpoint of strength. The molding temperature and time are suitable below $180^{\circ}C$ and 20 min for hemp fiber reinforced green composite. Hemp fiber green composite has a tendency to decrease its tensile strength when fiber content is over 50 wt%.

Evaluation of Residual Strength Under Impact Damage in Woven CFRP Composites (평직 CFRP 복합재료의 충격잔류강도 평가)

  • Choi, Jung-Hun;Kang, Min-Sung;Koo, Jae-Mean;Seok, Chang-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.6
    • /
    • pp.654-663
    • /
    • 2012
  • Damage induced by low velocity impact loading in aircraft composite is the form of failure which is frequently occurred in aircraft. As the consequences of impact loading in composite laminates, matrix cracking, delamination and eventually fiber breakage for higher impact energies can be occurred. Even when no visible impact damage is observed, damage can exist inside of composite laminates and carrying load of the composite laminates is considerably reduced. The objective of this study is to evaluate and predict residual strength behavior of composite laminates by impact loading and for this, tensile test after impact was carried out on composite laminates made of woven CFRP.

An Experimental Study on Geotextile Effects as Reinforcement and Vertical Drain Materials (보강재(補强材) 및 배수촉진재(排水促進材)로서 Geotextile 의 효과(効果)에 관한 실험적(實驗的) 연구(硏究))

  • Kim, Soo Il;Yoo, Ji Hyeung;Cho, Sam Deok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.2 no.4
    • /
    • pp.39-47
    • /
    • 1982
  • Geotextile effects as reinforcement and vertical drain materials are studied through the laboratory model embankments on weak clays. The experiments are carried out in four stages; no woven fabrics between clay-crushed stone boundary, fabrics between boundary with no initial pretensioning of fabrics, and fabrics between boundary with two different initial pretensionings of fabrics. In all stages, vertical drains utilizing non-woven fabrics are installed in the clay layer in square pattern to accelarate the consolidation. The experimental model has plane dimensions of $32cm{\times}330cm$. The height for the clay container is 60 cm. The 47 cm height of crushed stone embankment is constructed over the 50 cm deep clay layer. The time dependent pore pressures are measured utilizing the 8 piezometers installed symmetrically on both sides of the wall at different heights. The time dependent deformations are measured utilizing the LED indicating lamp matrix inserted in the crushed stone embankment and the dialgauges put on top of the clay layer where the crushed stones are not laid. The measurements are carried out for 10 days which is equivalent to the time required for the primary consolidation. Through the experimental study, an analytical procedure is developed to predict the time dependent embankment settlement even if the top of the clay layer is reinforced with woven fabrics. This can be done through measuring the maximum pore pressures developed in the clay layer and comparing with the theoretical maximum pore pressures when no reinforcing fabrics are employed.

  • PDF

Development of Modeling Technique and Material Prediction Method Considering Structural Characteristics of Woven Composites (직조 복합재료의 구조적 특성을 고려한 모델링 기법 및 물성 예측 기법 개발)

  • Choi, Kyung-Hee;Hwang, Yeon-Taek;Kim, Hee-June;Kim, Hak-Sung
    • Composites Research
    • /
    • v.32 no.5
    • /
    • pp.206-210
    • /
    • 2019
  • As the use of composite materials of woven structure has expanded to various fields such as automobile and aviation industry, there has been a need for reliability problems and prediction of mechanical properties of woven composites. In this study, finite element analysis for predicting the mechanical properties of composite materials with different weaving structures was conducted to verify similarity with experimental static properties and an effective modeling method was developed. To reflect the characteristics of the weave structure, the meso-scale representative volume element (RVE) was used in modeling. Three-dimensional modeling was carried out by separating the yarn and the pure matrix. Hashin's failure criterion was used to determine whether the element was failed, and the simulation model used a progressive failure model which was suitable for the composite material. Finally, the accordance of the modeling and simulation technique was verified by successfully predicting the mechanical properties of the composite material according to the weave structure.

Microstructure and Mechanical Property Changes of Unidirectional and Plain Woven CF/Mg Composite Laminates after Corrosion (일방향 및 평직 CF/Mg 복합재 적층판의 부식에 따른 미세조직 및 기계적 특성 변화)

  • Yim, Shi On;Lee, Jung Moo;Lee, Sang Kwan;Park, Yong Ho;Park, Ik Min
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.9
    • /
    • pp.697-702
    • /
    • 2012
  • In this study, unidirectional and plain woven carbon fiber reinforced magnesium matrix composite laminates were fabricated by the liquid pressing infiltration process, and evolutions of the microstructure and compressive strength of the composite laminates under corrosion were investigated by static immersion tests. In the case of the unidirectional composite laminate, the main microstructural damage during immersion appeared as a form of corrosion induced cracks, which were formed at both CF/Mg interfaces and the interfaces between layers. On the otherhand, wrap/fill interface cracks were mainly formed in the plain woven composite laminate, without any cracks at the CF/Mg interface. The formation of these cracks was considered to be associated with internal thermal residual stress, which was generated during cooling after the fabrication process of these materials. As a consequence of the corrosion induced cracks, the thickness of both laminates increased in directions vertical to the fibers with increasing immersion time. With increasing immersion time, the compressive strengths of both composite laminates also decreased continuously. It was found that the plain woven composite laminates have superior corrosion resistance and stability under a corrosive condition than unidirectional laminates.

Histological Study on the Interface of Bone and Implant (골과 임플란트 접촉면의 조직학적 연구)

  • Kim, Ju-Sung
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.37 no.1
    • /
    • pp.35-40
    • /
    • 2005
  • This paper reports the morphological nature of the remodelled interface process between implants and surrounding bone after 1, 4, 6, 8 and 12 weeks of implantation of smooth machined implants into rat tibias. After 4 weeks of implantation, histochemical analysis showed that the new bone was growing in direct contact with the implant. In the forming process, the activatived osteoblast cells migrated toward the interface and colonized the surface at the contact areas. This immature woven bone, rich in osteocyte lacunae, was deposited directly onto the implant surface. Osteoblast activity was found to continue ill 12 weeks of implantation The osteoblasts in lacunar areas developed numerous processes and synthesized bone matrix, after all, surrounded by secreting matrix. At the 12th week, the amount of newly formed bone matrix between bone and implant increased in mineralization. The mineralized mature bone contained well organized collagen fibers with characteristic banding pattern bone tissue formation around the implant.

  • PDF

Effect of Temperature on Frequency and Damping Properties of Polymer Matrix Composites

  • Colakoglu, M.
    • Advanced Composite Materials
    • /
    • v.17 no.2
    • /
    • pp.111-124
    • /
    • 2008
  • The effect of temperature on natural frequency and damping is investigated in two different composite materials, Kevlar 29 fiber woven and polyethylene cloth, used especially to design ballistic armor. A damping monitoring method is used experimentally to measure the frequency response curve and it is also modeled numerically using a finite element program. The natural frequencies of a material, or a system, are a function of its elastic properties, dimensions and mass. This concept is used to calculate theoretical vibration modes of the composites. The damping properties in terms of the damping factor are determined by the half-power bandwidth technique. Numerically analyzed and experimentally measured time response curves are compared. It is seen that polymer matrix composites have temperature dependent mechanical properties. This relationship is functional and they have different effects against temperature.

Fabrication and Characteristics of CFRC(Carbon Firber Reinforced Carbon Composites) Fabricated with Carbon Fiber and Coal Tar Pitch Matrix (석탄계 핏치를 결합재로한 탄소/탄소 복합재의 제조 및 특징)

  • Ju, Hyeok-Jong;Choe, Don-Muk;O, In-Seok
    • Korean Journal of Materials Research
    • /
    • v.4 no.2
    • /
    • pp.194-205
    • /
    • 1994
  • In this research, we attempt to fabricate an excellent CFRC(Carbon Fiber Reinforced Carbon), which has good thermal and mechanical properties, with 8H/satin woven fabric prepreg, high modulus and high strength type continuous carbon fiber and raw coal tar pitch(RCTP) matrix or THF soluble fraction(THFSP) matrix which has good graphitizability. Green bodies were fabricated with hot press molding technique and CFRC samples were made after carbonization, impregnation, recarbonization and graphitization steps. For the purpose of characterization of the physical properties, SEM, polarized light microscope, TGA were observed, and tested flexural strength, modulus and ILSS. After heat treating the THFSP matrix up to $2300^{\circ}C$, the value of $C_0$/2 was 3.380$\AA$, which is analogous to the structure of natural graphite and the value of 2$\theta$ is $26.276^{\circ}$ approached to the Bragg's angle of natural graphite. As a result of TGA to test the high temperature air oxidation, the THFSP matrix, graphitized up to $2300^{\circ}C$, exhibited the best air oxidation resistance. And mechanical properties were increased up to 65~70% as fiber volume fraction increased. Because of the good orientation graphitizability, the fracture surface of THFSP matrix CFRC is very good.

  • PDF

A study on carbon composite fabrication using injection/compression molding and insert-over molding (사출/압축 공정과 인서트 오버몰딩을 이용한 탄소복합소재 성형에 대한 연구)

  • Jeong, Eui-Chul;Yoon, Kyung-hwan;Hong, Seok-Kwan;Lee, Sang-Yong;Lee, Sung-Hee
    • Design & Manufacturing
    • /
    • v.14 no.4
    • /
    • pp.11-16
    • /
    • 2020
  • In this study, forming of carbon composite parts was performed using an injection/compression molding process. An impregnation of matrix is determined by ability of wet and flow rate between the matrix and reinforcement. The flow rate of matrix passing through the reinforcements is a function of permeability of reinforcement, a viscosity of matrix and pressure gradient on molding, and the viscosity of the matrix depends on the mold temperature, molding pressure and shear strain of matrix. Therefore, compression molding experiment was conducted using a heating mold in order to confirm the possibility of matrix impregnation. The impregnation of the matrix through the porosities between the woven yarns was confirmed by the cross-sectional SEM image of compression molded parts. An injection molding process was also performed at a short cycle time, high molding pressure and low mold temperature than those of compression experiment conditions. Deterioration of impregnation on the surface of molded parts were caused by these injection conditions and it could be the reason of decreasing the maximum tensile strength. In order to improve impregnation of matrix on the surface, injection/compression molding and insert-over molding were applied. As a result of applying injection/compression molding and insert-over molding, it was shown that the improvement of impregnation on the surface and the maximum tensile strength was increased about 2.8 times than the virgin matrix.