• Title/Summary/Keyword: woven matrix

Search Result 70, Processing Time 0.036 seconds

Effects of Non-Woven Tissue on the Mechanical Behavior of Angle-Ply Laminates (부직포가 예각 적층판의 기계적 거동에 미치는 효과)

  • 정성균
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.6
    • /
    • pp.109-115
    • /
    • 2001
  • This paper investigates the mechanical characteristics of angle-ply laminates with non-woven carbon tissue. The lami- nates were made by inserting non-woven carbon tissue at the interface. Specimens were rounded near the tabs by grinding and polishing to reduce the stress concentration. Cyclic loads were applied to the specimens and the stress and fatigue life curves were obtained. The matrix crack density was also evaluated to check the effects of non-woven carbon tissue on the fracture resistance of composite laminates. C-Sean technique was used to evaluate the delamination, and SEM was used to understand the fracture mechanisms of the laminates. Experimental results show that the fatigue strength and life of composite laminates were increased by inserting non- woven carbon tissues. The results also show that the matrix crack density and delamination area were reduced by inserting non-woven carbon tissues.

  • PDF

Effects of oil absorption on the wear behaviors of carbon/epoxy woven composites

  • Lee, Jae-H.;Lee, Jae-S.;Rhee, Kyong-Y.
    • Carbon letters
    • /
    • v.12 no.4
    • /
    • pp.249-251
    • /
    • 2011
  • Carbon/epoxy woven composites are prominent wear-resistant materials due to the strength, stiffness, and thermal conductivity of carbon fabric. In this study, the effect of oilabsorption on the wear behaviors of carbon/epoxy woven composites was investigated. Wear tests were performed on dry and fully oil-absorbed carbon/epoxy woven composites. The worn surfaces of the test specimens were examined via scanning electron microscopy to investigate the wear mechanisms of oil-absorbed carbon/epoxy woven composites. It was found that the oil absorption rate was 0.14% when the carbon/epoxy woven composites were fully saturated. In addition, the wear properties of the carbon/epoxy woven composites were found to be affected by oilabsorption. Specifically, the friction coefficients of dry and oil-absorbed carbon/epoxy woven composites were 0.25-0.30 and 0.55-0.6, respectively. The wear loss of the oilabsorbed carbon/epoxy woven composites was $3.52{\times}10^{-2}\;cm^3$, while that of the dry carbon/epoxy woven composites was $3.52{\times}10^{-2}\;cm^3$. SEM results revealed that the higher friction coefficient and wear loss of the oil-absorbed carbon/epoxy woven composites can be attributed to the existence of broken and randomly dispersed fibers due to the weak adhesion forces between the carbon fibers and the epoxy matrix.

Finite Element Analysis for Effective Properties of Ceramic Matrix Plain Woven Textile Composites (유한요소법을 이용한 평직 세라믹 기지 복합재료의 등가물성치 산정)

  • Lee, Sung-Wook;Cho, Chong-Du
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1163-1167
    • /
    • 2003
  • Effective properties of ceramic matrix plain woven textile composites were calculated using finite element analysis. The considered geometry is a unit cell of plain weave and the analysis was performed by commercial finite element program, ANSYS. The materials for analysis are 3 types for matrix, 1 type for fiber with various volume fraction. The result indicates that the effective properties of ceramic matrix composites can be controlled by the volume fraction. The result can be used for numerical analysis using ceramic matrix composites.

  • PDF

Fabrication and Characterization of Al Matrix Composites Reinforced with 3-D Orthogonal Carbon Textile Preforms (3차원 직조형 금속복합재료의 제조와 특성분석)

  • 이상관;변준형;홍순형
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.188-191
    • /
    • 2002
  • 3-D orthogonal woven carbon/Al composites were fabricated using a pressure infiltration casting method. Especially, to minimize geometrical deformation of fiber pattern and $Al_4C_3$ formation, the process parameters of the minimum pressurizing force, melting temperature, delay and holding time of molten aluminum pressurizing was optimized through the PC-controlled monitoring system. Resonant ultrasound spectroscopy (RUS) was utilized to measure the effective elastic constants of 3-D orthogonal woven carbon/Al composites. The CTE measurement was conducted using strain gages in a heating oven.

  • PDF

A Study on the Tensile Strength of Glass Woven Fiber Reinforced PET Composites (직조유리섬유강화 PET수지 복합체의 인장특성에 관한 연구)

  • 김홍건;최창용
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.1
    • /
    • pp.45-49
    • /
    • 2003
  • Tensile strength of the woven glass fiber reinforced PET (Poly-Ethylene-Terephthalate) matrix composite manufactured by rapid press consolidation technique was investigated and evaluated. During pre-heating, consolidation and solidification stages, the optimal manufacturing conditions for this composite were discussed based on the void content and tensile properties depending on vacuum condition. It is found that the effect of vacuum condition during preheating gives a substantial difference on the strength as well as microstructure. It is also found that the failure micromechanism shows several energy absorption processes enhancing fracture toughness.

Thermal Fatigue Behavior of 3D-Woven SiC/SiC Composite with Porous Matrix for Transpiration Cooling Passages

  • Hayashi, Toshimitsu;Wakayama, Shuichi
    • Advanced Composite Materials
    • /
    • v.18 no.1
    • /
    • pp.61-75
    • /
    • 2009
  • The effect of porous matrix on thermal fatigue behavior of 3D-orthogonally woven SiC/SiC composite was evaluated in comparison with that having relatively dense matrix. The porous matrix yields open air passages through its thickness which can be utilized for transpiration cooling. On the other hand, the latter matrix is so dense that the air passages are sealed. A quantity of the matrix was varied by changing the number of repetition cycles of the polymer impregnation pyrolysis (PIP). Strength degradation of composites under thermal cycling conditions was evaluated by the $1200^{\circ}C$/RT thermal cycles with a combination of burner heating and air cooling for 200 cycles. It was found that the SiC/SiC composite with the porous matrix revealed little degradation in strength during the thermal cycles, while the other sample showed a 25% decrease in strength. Finally it was demonstrated that the porous structure in 3D-SiC/SiC composite improved the thermal fatigue durability.

An Experimental and Numerical Study on the Thermally Induced Residual Stress Effect in Metal Matrix Composites (열처리시 발생되는 잔류응력이 금속복합체에 미치는 영향에 관한 실험 및 수치해석적 연구)

    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.4
    • /
    • pp.108-117
    • /
    • 1997
  • A continuum analysis has been performed for the application to the thermo-elasto-plastic behavior in a discontinuous metal matrix composite. an FEM (Finite Element Method) analysis was implemented to obtain the internal field quantities of composite as well as overall composite behavior and an experiment was demonstrated to compare with the numerical simulation . As the procedure, a reasonably optimized FE mesh generation, the appropriate imposition of boundary condition , and the relevant post processing such as elastoplastic thermomchanical analysis were taken into account. For the numerical illustration, an aligned axisymmetric single fiber model with temperature dependent material properties and precipitation hardening effect has been employed to assess field quantities. It was found that the residual stresses are induced substantially by the temperature drop during the thermal treatment and that the FEM results of the vertically and horizontally constrained model give a good agreement with experimental data.with non-woven carbon mat is about 24% higher than that of composite materials without non-woven carbon mat. Transverse tensile strength and torughness also increase by inserting non-woven carbon mat between layers.

  • PDF

Compression failure and fiber-kinking modeling of laminated composites

  • Ataabadi, A. Kabiri;Ziaei-Rad, S.;Hosseini-Toudeshky, H.
    • Steel and Composite Structures
    • /
    • v.12 no.1
    • /
    • pp.53-72
    • /
    • 2012
  • In this study, the physically-based failure models for matrix and fibers in compression and tension loading are introduced. For the 3D stress based fiber kinking model a modification is proposed for calculation of the fiber misalignment angle. All of these models are implemented into the finite element code by using the advantage of damage variable and the numerical results are discussed. To investigate the matrix failure model, purely in-plane transverse compression experiments are carried out on the specimens made by Glass/Epoxy to obtain the fracture surface angle and then a comparison is made with the calculated numerical results. Furthermore, shear failure of $({\pm}45)_s$ model is investigated and the obtained numerical results are discussed and compared with available experimental results. Some experiments are also carried out on the woven laminated composites to investigate the fracture pattern in the matrix failure mode and shown that the presented matrix failure model can be used for the woven composites. Finally, the obtained numerical results for stress based fiber kinking model and improved ones (strain based model) are discussed and compared with each other and with the available results. The results show that these models can predict the kink band angle approximately.

Thin Plate Fabrication and Characterization of Plain Woven Carbon / 6061 Al Composites (Plain woven carbon/6061Al 금속복합재료의 제조와 특성분석)

  • Chang Jae-Jun;Ha Dong-Ho;Eom Mun-Gwang;Lee Sang-kwan
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.250-253
    • /
    • 2004
  • Emphasis has been placed on thin plate fabrication of plain woven carbon fabric reinforced Al matrix composites using liquid pressing process. The composite has potential applications for PDP rear plate. The process is to use the low pressure for infiltration of Al melt into plain woven carbon fabric as the Al melt is pressurized directly. The minimum pressure required for the infiltration was calculated from force balance equation, permeability measurements and compaction behavior of carbon fiber. Also, the melting temperature and the holding time have been optimized. In order to measure coefficient of thermal expansion (CTE) of the composites, the thermal strain measurement using strain gage was performed and the thermal conductivity of the composites was measured using laser flash method. The constituent materials of the composite are PAN type carbon fibers as reinforcements and 6061 Al alloys as matrices.

  • PDF

A study on the improvement of impregnation on the surface of injection-molded thermoplastic woven carbon fabric composite (열가소성 직물탄소복합소재 사출 성형품의 표면 함침 개선에 관한 연구)

  • Jeong, Eui-Chul;Yoon, Kyung-Hwan;Lee, Sung-Hee
    • Design & Manufacturing
    • /
    • v.15 no.3
    • /
    • pp.39-44
    • /
    • 2021
  • In molding of continuous fiber-reinforced thermoplastic composites, it is very difficult to impregnate between the reinforcements and the matrix since the matrix has a high melting temperature and high viscosity. Therefore, most of composite molding processes are divided in the manufacturing processes of intermediate materials called prepreg and the forming of products from intermediate materials. The divided process requires additional facilities and thermoforming, and they increase the cycle time and cost of composite products. These problems can be resolved by combining the continuous fiber-reinforced composite molding process with injection molding. However, when a composite material is manufactured by inserting woven fabric into the injection mold, poor impregnation occurs on the surface of the molded product. It affects the properties of the composites. In this paper, through an impregnation experiment using cores with different heat transfer rates and pore densities, the reason for the poor impregnation was confirmed, and molding experiments were conducted to produce composite with improved surface impregnation by inserting the mesh. And also, the surface impregnation and deformation of composites molded using different types of mesh were compared with each other.