• Title/Summary/Keyword: woven composite

Search Result 280, Processing Time 0.026 seconds

Evaluation of Tensile Properties of Carbon Fiber Reinforced Composite Laminates with Non-Woven Carbon Mat (부직포를 삽입한 탄소섬유강화 복합적층판의 인장특성 평가)

  • 정성균
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.4
    • /
    • pp.96-100
    • /
    • 1997
  • Tensile properties of carbon fiber reinforce composite laminates with non-woven carbon mat are evaluated in this paper. Composite laminates are made by inserting non-wovon carbon mat between layers, The specimens were cut and polished according to ASTM standard . Longitudinal and Transverse Young's modulus are obtained by tensile test. Young's moduli without non-woven carbon mat are compared with those with non-woven carbon mat. Longitudinal and Transverse tensile strength are also investigated. Experimental results show that the transverse Young's modulus of composite materials with non-woven carbon mat is about 10% higher than that of composite materials without non-woven carbon mat. Longitudinal tensile strength of composite materials with non-woven carbon mat is about 24% higher than that of composite materials without non-woven carbon mat. Transverse tensile strength and torughness also increase by inserting non-woven carbon mat between layers.

  • PDF

Effect of non-woven tissues on interlaminar fracture toughness of composite laminate (부직포가 복합적층판의 층간파괴인성에 미치는 효과)

  • 김영배;정성균;강진식;김태형
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.110-114
    • /
    • 2000
  • The Interlaminar fracture behavior of hybrid composite with non-woven carbon tissue was investigated under Mode I (DCB) and Mode II (ENF) loading condition. Hybrid composites were manufactured by means of inserting a non-woven tissue between prepreg layers. Two kinds of specimens were prepared from [0]$_{24}$ and [$0_{12}/0_{12}$]. Where, the symbol "/" means that a non-woven carbon tissue was located at 0/0 mid-plane of the specimen. The interlaminar fracture toughness of hybrid composites was compared with that of CFRP. The fracture surfaces of the specimens were observed using optical microscope and SEM, and the failure mechanism was discussed. The hybrid laminates, which are made by inserting non-woven carbon tissue between layers, were shown to be effective to remarkably improve Mode II fracture toughness.toughness.

  • PDF

Measurement of Thermal Conductivity of a 8-harness Carbon/Phenolic Woven Composite (탄소/페놀릭 8매 주자직 복합재료의 열전도도 계측)

  • 구남서;우경식
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.50-52
    • /
    • 2003
  • The purpose of this study is to measure the thermal conductivity of a carbon/phenolic 8-harness woven composite. An experiment apparatus and procedure developed in the previous study were used to measure the thermal conductivities. This method compares the temperature difference between a reference specimen with a known thermal conductivity and the test sample specimen in a steady-state condition.

  • PDF

Virtual Experimental Characterization of 3D Orthogonal Woven Composite Materials (직교 직물 복합재료 물성치 예측을 위한 가상 수치 실험)

  • Lee, Chang-Sung;Shin, Hun;Kim, Seung-Jo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.205-210
    • /
    • 2001
  • In this work, virtual material characterization of 3D orthogonal woven composites is performed to predict the elastic properties by a full scale FEA. To model the complex geometry of 3D orthogonal woven composites, an accurate unit structure is first prepared. The unit structure includes warp yarns, filler yarns, stuffer yams and resin regions and reveals the geometrical characteristics. For this virtual experiments by using finite element analysis, parallel multifrontal solver is utilized and the computed elastic properties are compared to available experimental results and the other analytical results. It is founded that a good agreement between material properties obtained from virtual characterization and experimental results. Using the method of this virtual material characterization, the effects of inconsistent filler yarn distribution on the in-plane shear modulus and filler yarn waviness on the transverse Young's modulus are investigated. Especially, the stiffness knockdown of 3D woven composite structures is simulated by virtual characterization. Considering these results, the virtual material characterization of composite materials can be used for designing the 3D complex composite structures and may supplement the actual experiments.

  • PDF

Natural Dyeing Absorption Properties of Chitosan and Nano Silver Composite Non-Woven Fabrics -Focus on Chrysanthemum Indicum Linn- (키토산/나노실버 복합섬유 혼방 부직포의 천연염색 염착특성 -감국을 중심으로-)

  • Hong, Byung-Suk;Chu, Young-Ju;Lee, Eun-Jin
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.34 no.5
    • /
    • pp.775-783
    • /
    • 2010
  • This study examines the dyeability, light fastness, washing fastness, and the antibacterial activity of chitosan and nano silver composite non-woven fabrics dyed with an extracted solution from Chrysanthemum Indicum Linn. The results show that an increase in the chitosan and nano silver percentage resulted in an increase in the $a^*$ values and $b^*$ values; however, the $L^*$ values decreased in the undyed condition. ${\Delta}E$ values of chitosan and nano silver composite non-woven fabrics were higher than cotton 100% non-woven fabrics in the dyed condition with an extracted solution from Chrysanthemum Indicum Linn, and mordant treatments influenced the chrominance change. In the dyed condition with an extracted solution from Chrysanthemum Indicum Linn, an increase in the percentage of chitosan and nano silver resulted in an increase of the K/S values. The dyeability of chitosan and nano silver composite non-woven fabrics increased by mordant treatments. The light fastness and washing fastness of the mordanted non-woven fabrics were better than the non-mordanted. For the antibacterial activity, the bacterial reduction rate of chitosan and nano silver composite non-woven fabrics was 99.9% to Staphylococcus aureus and Klebsiella pneumoniae.

Low-Velocity Impact Characterizations of 3D Orthogonal Woven Composite Plate (3D 직교 직물 복합재료의 충격 거동 및 특성에 관한 수치해석)

  • 지국현;김승조
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.170-174
    • /
    • 2002
  • In this study, the material characterization and the dynamic behavior of 3D orthogonal woven composite materials has been studied under transverse central low-velocity impact condition by means of the micromechanical model using finite elements. To build up the micromechanical model considering tow spacing and waviness, an accurate unit structure is stacked in x-y-z direction repeatedly. First, the mechanical properties of 3D orthogonal woven composites are obtained by means of virtual experiment using full scale Finite Element Analysis based on the DNS concepts, and the computed elastic properties are validated by comparison to available experimental results[9]. Second, using the implementation of this validated micromechanical model, 3D transient finite-element analysis is performed considering contact and impact, and the impact behavior of 3D orthogonal woven composite is investigated. A comparison study will be carried out in terms of energy absorption capabilities.

  • PDF

A Study of damage behaviors of 3D orthogonal woven composite plates under Low velocity Impact (3D 직교 직물 복합재료 평판의 미시구조를 고려한 손상 거동 연구)

  • Ji, Kuk-Hyun;Yang, Jeong-Sik;Kim, Seung-Jo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.53-56
    • /
    • 2005
  • In this study, the material characterization and the dynamic behavior of 3D orthogonal woven composite materials has been studied under transverse central low-velocity impact condition by means of the micromechanical model using finite elements. To build up the micromechanical model considering tow spacing and waviness, an accurate unit structure is stacked in x-y-z direction repeatedly. First, the mechanical properties of 3D orthogonal woven composites arc obtained by means of virtual experiment using full scale Finite Element Analysis based on the DNS concepts, and the computed elastic properties arc validated by comparison to available experimental results. Second, using the implementation of this validated micromechanical model, 3D transient finite-clement analysis is performed considering contact and impact, and the impact behavior of 3D orthogonal woven composite is investigated. A comparison study with the homogenized model will be carried out in terms of global and local behaviors.

  • PDF

Analytical Prediction and Validation of Elastic Behavior of Carbon-Fiber-Reinforced Woven Composites (탄소섬유강화 직조복합재의 탄성 거동의 이론적 예측 및 검증)

  • Hwang, Yeon-Taek;Lim, Jae-Young;Nam, Byeung-Gun;Kim, Hak-Sung
    • Composites Research
    • /
    • v.31 no.5
    • /
    • pp.276-281
    • /
    • 2018
  • In this paper, elastic behavior of woven fabric composites with various fiber yarn structure were predicted through a theoretical calculation model. A representative volume elements (RVE) that can represent the mechanical properties of the woven composites were selected and crimp angle of the weave yarn was defined by several sinusoidal functions. The effective material properties of the woven composite such as young's modulus, shear modulus and poisson's ratio was predicted by classical laminate theory (CLT). The fiber volume fractions were calculated according to the shape and pattern (plain, twill weave) of the fiber yarn, and the elastic behavior of each woven composite was obtained through a theoretical calculation model. Also, to verify the theoretical predictions, woven composite specimens of plain and twill weave were fabricated by vacuum assisted resin transfer molding (VARTM) process and then mechanical test was conducted. As a results, a good correlation between theoretical and experimental results for the elastic behavior of woven composites could be achieved.

Finite Element Analysis and Validation for Mode I Interlaminar Fracture behavior of Woven Fabric Composite For a Train Carbody Using CZM(Cohesive Zone Model) (CZM(Cohesive Zone Model)을 이용한 철도차량용 직물 복합재의 모우드 I 층간파괴의 해석적 연구)

  • Kim, Seung-Chul;Kim, Jung-Seok;Yoon, Hyuk-Jin;Seo, Seung-Il
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.239-246
    • /
    • 2009
  • The Mode I interlaminar fracture toughness of woven fabric carbon/epoxy and glass/epoxy composites for a train carbody was measured and FEM analysis was conducted. The woven fabric epoxy composite manufactured by hand lay-up, has high stiffness and strength, good resistance for impact, fatigue, corrosion and in-plane failure. The DCB(Double Cantilever Beam) specimen made of woven fabric epoxy composite had the size of 180mm $\times$ 25mm $\times$ 5mm and the insert of 65mm. The Mode I interlaminar toughness of specimen was measured according to ASTM 5528-01. The crack propagation behavior of the DCB specimen was simulated using FEA with cohesive elements that model the adhesive layer between woven fabric plies.

  • PDF

A Damage Analysis of Glass/phenol Laminated Composite Subjected to Low Velocity Impact (저속 충격을 받는 Glass/phenol 복합적층재의 손상 해석)

  • 나재연;이영신;김재훈;조정미;박병준
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.89-92
    • /
    • 2002
  • Traditionally unidirectional laminated composite which are characterized by high specific stiffness and strength were used for structural application. But theses composites are highly susceptible to impact damage because of lower transverse tensile strength. The main failure modes of laminated composite are fiber breakage, matrix cracking and delamination for low velocity impact. The modified failure criterions are implemented to predict these failure modes with finite element analysis. Failure behavior of the woven fabric laminated composite which is used in forehead part of subway to lighten weigh has been studied. The new failure criterions are in good agreement with experimental results and can predict the failure behavior of the woven fabric composite plate subjected to low velocity impact more accurately.

  • PDF