• Title/Summary/Keyword: worst case analyses

Search Result 26, Processing Time 0.022 seconds

A Low Phase Noise Design of Voltage Controlled Dielectric Resonator Oscillator and Reliability Analysis (전압제어 유전체 공진 발진기의 저위상잡음 설계 및 신뢰도 분석)

  • Ryu Keun-Kwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.2
    • /
    • pp.408-414
    • /
    • 2005
  • The VCDRO(Voltage Controlled Dielectric Resonate. Oscillator) with low phase noise is designed using nonlinear analysis, and its phase noise characteristics are compared with that of Lesson's equation. The microstripline coupled with dielectric resonator is realized as a high impedance inverter to improve the phase noise performance, and the quality factor of resonator circuit can be transferred to active device with the enhanced the loaded quality factor. The worst case and part stress analyses are achieved to obtain the high reliability of VCDRO and the reliability analysis is accomplished to estimate the probability of operation at the end of life. The developed VCDRO has the oscillating tuning factor of 0.56MHZ1V for the control voltage range of 0-l2V. This VCDRO requires the DC power of 136mW. The phase noise characteristics exhibit good performances of -94.18dBc/Hz (a)10KHz and -116.3dBc/Hz (a)100KHz. And, the output power over 7.33dBm is measured.

A Study on the Light Weighting of APU through Structural Analysis (구조해석을 통한 보조발전기 경량화에 관한 연구)

  • Kim, Hye-Eun;Kim, Jin-Hoon;Noh, Sang-Wan;Kim, Byeong-Ho;Baek, Hyun-Moo
    • Journal of Korean Society for Quality Management
    • /
    • v.47 no.4
    • /
    • pp.895-910
    • /
    • 2019
  • Purpose: The purpose of this study is to lighten the APU (Auxiliary Power Unit) structure of the KAAV (Korea Assault Amphibious Vehicle) through structural analysis. Methods: Commercially-available program (MIDAS.NFX) was used for finite element analysis. Frequency response analysis was performed through linear static and mode analyses to verify the structural stability according to the change of the structural materials. Results: Numerical simulation (linear static, mode and frequency response analyses) results showed that the safety factor of the APU was over 1.5 even under the worst case conditions. The APU made by aluminum structures was expected to be available in the military field, since every requirements in the KDS (Korean Defense Specifications) was fulfilled during the various tests and evaluations. Conclusion: The structural analysis was verified that the structural stability of the APU structure of the KAAV after change of the structural material.

A Novel Cryptosystem Based on Steganography and Automata Technique for Searchable Encryption

  • Truong, Nguyen Huy
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.5
    • /
    • pp.2258-2274
    • /
    • 2020
  • In this paper we first propose a new cryptosystem based on our data hiding scheme (2,9,8) introduced in 2019 with high security, where encrypting and hiding are done at once, the ciphertext does not depend on the input image size as existing hybrid techniques of cryptography and steganography. We then exploit our automata approach presented in 2019 to design two algorithms for exact and approximate pattern matching on secret data encrypted by our cryptosystem. Theoretical analyses remark that these algorithms both have O(n) time complexity in the worst case, where for the approximate algorithm, we assume that it uses ⌈(1-ε)m)⌉ processors, where ε, m and n are the error of our string similarity measure and lengths of the pattern and secret data, respectively. In searchable encryption, our cryptosystem is used by users and our pattern matching algorithms are performed by cloud providers.

Small-Signal Modeling and Control of Three-Phase Bridge Boost Rectifiers under Non-Sinusoidal Conditions

  • Chang, Yuan;Jinjun, Liu;Xiaoyu, Wang;Zhaoan, Wang
    • Journal of Power Electronics
    • /
    • v.9 no.5
    • /
    • pp.757-771
    • /
    • 2009
  • This paper proposes a systematic approach to the modeling of the small-signal characteristics of three-phase bridge boost rectifiers under non-sinusoidal conditions. The main obstacle to the conventional synchronous d-q frame modeling approach is that it is unable to identify a steady-state under non-sinusoidal conditions. However, for most applications under non-sinusoidal conditions, the current loops of boost rectifiers are designed to have a bandwidth that is much higher than typical harmonics frequencies in order to achieve good current control for these harmonic components. Therefore a quasi-static method is applied to the proposed modeling approach. The converter small-signal characteristics developed from conventional synchronous frame modeling under different operating points are investigated and a worst case point is then located for the current loop design. Both qualitative and quantitative analyses are presented. It is observed that operating points influence the converter low frequency characteristics but hardly affect the dominant poles. The relationship between power stage parameters, system poles and zeroes is also presented which offers good support for the system design. Both the simulation and experimental results verified the analysis and proposed modeling approach. Finally, the practical case of a parallel active power filter is studied to present the modeling approach and the resultant regulator design procedure. The system performance further verifies the whole analysis.

원격측정명령처리기 성능검증모델 개발

  • Kim, Joong-Pyo;Koo, Cheol-Hea;Choi, Jae-Dong;Chae, Jong-Won;Kim, Jung-Hoon;Koo, Ja-Chun
    • Aerospace Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.86-94
    • /
    • 2005
  • This paper shows the results of design, analysis, manufacturing and test performed to develop the CTU(Command Telemetry Unit) EQM(Engineering Qualification Model). According to the key requirement specifications, the logics and circuits of each board are designed. In order to validate designs, some worst case, part stress, reliability, FMECA, radiation environment and launch environment analyses are performed. After manufacturing and assembling all boards, all functions of CTU EQM are verified through the functional test, environmental test and ETB test.

  • PDF

Spatial Water Quality Analysis of Main Stream of Nakdong River Considering the Inflow of Tributaries (유입지천을 고려한 낙동강 본류구간의 공간적 수질특성 분석)

  • Kim, Sorae;Kim, Sang Min
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.6
    • /
    • pp.640-649
    • /
    • 2017
  • The purpose of this study is the analysis of the water quality spatial characteristics for the main stream of Nakdong River in consideration of the tributary inflow. The flow and water quality (BOD, TOC, TP) data for 32 monitoring stations located in the main stream and the tributaries of Nakdong River were collected from 2003 to 2016. From the results of the flow and water quality analyses for each site, a status map of the flow and the water quality for Nakdong River was produced. The water quality of each river section was classified according to seven river-environment standards. The water quality changes in the main stream before and after the confluence were analyzed spatially. As a result, the water quality of Kumho River, in particular the Kumho B to Kumho C section, is the worst among the tributaries. In addition, the water quality grades of the lower streams such as Nam River and Miryang are worse than that of the upper streams of the Nakdong River. In the case of the main stream, the water quality grades of the sections between the Wicheon and Nam River confluences and the section from Nakbon L to Nakbon N are relatively poor.

Energy Balance and Power Performance Analysis for Satellite in Low Earth Orbit

  • Jang, Sung-Soo;Kim, Sung-Hoon;Lee, Sang-Ryool;Choi, Jae-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.3
    • /
    • pp.253-262
    • /
    • 2010
  • The electrical power system (EPS) of Korean satellites in low-earth-orbit is designed to achieve energy balance based on a one-orbit mission scenario. This means that the battery has to be fully charged at the end of a one-orbit mission. To provide the maximum solar array (SA) power generation, the peak power tracking (PPT) method has been developed for a spacecraft power system. The PPT is operated by a software algorithm, which tracks the peak power of the SA and ensures the battery is fully charged in one orbit. The EPS should be designed to avoid the stress of electronics in order to handle the main bus power from the SA power. This paper summarizes the results of energy balance to achieve optimal power sizing and the actual trend analysis of EPS performance in orbit. It describes the results of required power for the satellite operation in the worst power conditions at the end-of-life, the methods and input data used in the energy balance, and the case study of energy balance analyses for the normal operation in orbit. Both 10:35 AM and 10:50 AM crossing times are considered, so the power performance in each case is analyzed with the satellite roll maneuver according to the payload operation concept. In addition, the data transmission to the Korea Ground Station during eclipse is investigated at the local-time-ascending-node of 11:00 AM to assess the greatest battery depth-of-discharge in normal operation.

Influence of corrosive phenomena on bearing capacity of RC and PC beams

  • Malerba, Pier Giorgio;Sgambi, Luca;Ielmini, Diego;Gotti, Giordano
    • Advances in concrete construction
    • /
    • v.5 no.2
    • /
    • pp.117-143
    • /
    • 2017
  • The attack of environmental aggressive agents progressively reduces the structural reliability of buildings and infrastructures and, in the worst exposition conditions, may even lead to their collapse in the long period. A change in the material and sectional characteristics of a structural element, due to the environmental damaging effects, changes its mechanical behaviour and varies both the internal stress redistribution and the kinematics through which it reaches its ultimate state. To identify such a behaviour, the evolution of both the damaging process and its mechanical consequences have to be taken into account. This paper presents a computational approach for the analysis of reinforced and prestressed concrete elements under sustained loading conditions and subjected to given damaging scenarios. The effects of the diffusion of aggressive agents, of the onset and development of the corrosion state in the reinforcement and the corresponding mechanical response are studied. As known, the corrosion on the reinforcing bars influences the damaging rate in the cracking pattern evolution; hence, the damage development and the mechanical behaviours are considered as coupled phenomena. The reliability of such an approach is validated in modelling the diffusion of the aggressive agents and the changes in the mechanical response of simple structural elements whose experimental behaviour is reported in Literature. A second set of analyses studies the effects of the corrosion of the tendons of a P.C. beam and explores potentially unexpected structural responses caused by corrosion under different aggressive exposition. The role of the different types and of the different positions of the damaging agents is discussed. In particular, it is shown how the collapse mode of the beam may switch from flexural to shear type, in case corrosion is caused by a localized chloride attack in the shear span.

Prevention of Occupational Diseases in Turkey: Deriving Lessons From Journey of Surveillance

  • Sen, Seyhan;Barlas, GulSen;YakiStiran, Selcuk;Derin, ilknur G.;Serifi, Berna A.;Ozlu, Ahmet;Braeckman, lutgart;laan, Gert van der;Dijk, Frank van
    • Safety and Health at Work
    • /
    • v.10 no.4
    • /
    • pp.420-427
    • /
    • 2019
  • Introduction: To prevent and manage the societal and economic burden of occupational diseases (ODs), countries should develop strong prevention policies, health surveillance and registry systems. This study aims to contribute to the improvement of OD surveillance at national level as well as to identify priority actions in Turkey. Methods: The history and current status of occupational health studies were considered from the perspective of OD surveillance. Interpretative research was done through literature review on occupational health at national, regional and international level. Analyses were focused on countries' experiences in policy development and practice, roles and responsibilities of institutions, multidisciplinary and intersectoral collaboration. OD surveillance models of Turkey, Belgium and the Netherlands were examined through exchange visits. Face-to-face interviews were conducted to explore the peculiarities of legislative and institutional structures, the best and worst practices, and approach principles. Results: Some countries are more focused on exploring OD trends through effective and cost-efficient researches, with particular attention to new and emerging ODs. Other countries try to reach every single case of OD for compensation and rehabilitation. Each practice has advantages and shortcomings, but they are not mutually exclusive, and thus an effective combination is possible. Conclusion: Effective surveillance and registry approaches play a key role in the prevention of ODs. A well-designed system enables monitoring and assessment of OD prevalence and trends, and adoption of preventive measures while improving the effectiveness of redressing and compensation. A robust surveillance does not only provide protection of workers' health but also advances prevention of economic losses.

Performance Impact of Large File Transfer on Web Proxy Caching: A Case Study in a High Bandwidth Campus Network Environment

  • Kim, Hyun-Chul;Lee, Dong-Man;Chon, Kil-Nam;Jang, Beak-Cheol;Kwon, Tae-Kyoung;Choi, Yang-Hee
    • Journal of Communications and Networks
    • /
    • v.12 no.1
    • /
    • pp.52-66
    • /
    • 2010
  • Since large objects consume substantial resources, web proxy caching incurs a fundamental trade-off between performance (i.e., hit-ratio and latency) and overhead (i.e., resource usage), in terms of caching and relaying large objects to users. This paper investigates how and to what extent the current dedicated-server based web proxy caching scheme is affected by large file transfers in a high bandwidth campus network environment. We use a series of trace-based performance analyses and profiling of various resource components in our experimental squid proxy cache server. Large file transfers often overwhelm our cache server. This causes a bottleneck in a web network, by saturating the network bandwidth of the cache server. Due to the requests for large objects, response times required for delivery of concurrently requested small objects increase, by a factor as high as a few million, in the worst cases. We argue that this cache bandwidth bottleneck problem is due to the fundamental limitations of the current centralized web proxy caching model that scales poorly when there are a limited amount of dedicated resources. This is a serious threat to the viability of the current web proxy caching model, particularly in a high bandwidth access network, since it leads to sporadic disconnections of the downstream access network from the global web network. We propose a peer-to-peer cooperative web caching scheme to address the cache bandwidth bottleneck problem. We show that it performs the task of caching and delivery of large objects in an efficient and cost-effective manner, without generating significant overheads for participating peers.