• Title/Summary/Keyword: working efficiency

Search Result 1,443, Processing Time 0.025 seconds

Thermodynamic Performance Characteristics of Transcritical Organic Rankine Cycle Depending on Source Temperature and Working Fluid (열원온도와 작동유체에 따른 초월임계 유기랭킨사이클의 열역학적 성능 특성)

  • Kim, Kyoung Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.11
    • /
    • pp.699-707
    • /
    • 2017
  • This study presents a comparative thermodynamic analysis of subcritical and transcritical organic Rankine cycles for the recovery of low-temperature heat sources considering nine substances as the working fluids. The effects of the turbine inlet pressure, source temperature, and working fluid on system performance were all investigated with respect to metrics such as the temperature distribution of the fluids and pinch point in the heat exchanger, mass flow rate, and net power production, as well as the thermal efficiency. Results show that as the turbine inlet pressure increases from the subcritical to the supercritical range, the mismatch between hot and cold streams in the heat exchanger decreases, and the net power production and thermal efficiency increase; however, the turbine size per unit power production decreases.

Development of CAD/CAM System with Reusable Design Information for Improving Production Efficiency (생산효율의 향상을 위한 설계정보의 재사용이 가능한 CAD/CAM 시스템 개발)

  • Kang, Bong Ku;Lee, Jong Hang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.7
    • /
    • pp.597-604
    • /
    • 2014
  • High efficiency production requires the improved performance of CAD/CAM system. Although the CAD and CAM have been significantly developed over the last three decades, they must still study on the reuse of information during process. In this study, we developed a new integrated CAD/CAM system which can reuse the information generated in previous processes, in order to improve its performance. In addition, the developed system was verified by comparing with working-time, and system reproducibility was also examined with tolerance in the unmanned operation. Experimental results showed 58% reduction in working-time of 2D Auto-CAM module, 80% in case of 3D Auto-Exchange module, and 54.5% in case of Auto-Design module.

A Study on the Relationships Between the Electrooptical Characteristics and Working Gas Xe+Ne+He (AC PDP의 전기광학적 특성과 동작 Gas $Xe_x+Ne_y+He_{1-y)$의 상관관계에 관한 연구)

  • Park, Chung-Hoo;Yoo, Su-Bok;Lee, Hae-June;Lee, Ho-Jun;Kim, Jae-Sung;Lee, Don-Kyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.9
    • /
    • pp.1619-1625
    • /
    • 2007
  • The gas mixture ratio of PDP discharges plays a very important role in the discharge characteristics of a plasma display panel. The increase of Xe contents results in the increases of luminance and luminous efficiency while it also results in the increase of the breakdown voltage. The addition of He gas increases the brightness and the luminous efficiency. Especially, the luminance and the luminous efficiency have a maximum value when the partial pressure of He is about 10% of the total pressure for a standard plasma display panel with Xe fraction of $10\sim30%$.

Design of an Absorption Heat Transformer with Methanol-Glycerine System as a Working Fluid (메탄올-글리세린 계를 작동유체로 하는 변형흡수식 열펌프 설계)

  • Chung, Chan-Kyo;Min, Byong-Hun
    • Clean Technology
    • /
    • v.11 no.1
    • /
    • pp.13-19
    • /
    • 2005
  • An absorption heat transformer for energy recovery has been investigated using methanol-glycerine. The simulated calculation of theoretical thermal efficiency was performed based on the thermodynamic properties of the working fluid over various operating conditions. The thermal efficiency of higher than 0.4 was obtained by raising industrial waste heat, $70-80^{\circ}C$, by $40^{\circ}C$ in this system.

  • PDF

A Study on the Characteristics of Volumetric Efficiency of an Axial Piston Pump considering Piston Tilting

  • Park, In-Kyu;Rhim, Yoon-Chul
    • KSTLE International Journal
    • /
    • v.10 no.1_2
    • /
    • pp.37-42
    • /
    • 2009
  • This paper presents the characteristics of volumetric efficiency of an axial type piston pump considering the piston tilting. A numerical analysis is carried out in order to obtain the pressure distribution considering the fluid inertia at the notch of the valve plate. The cylinder pressure variation and the discharge flow rate are measured experimentally according to the operating conditions such as supply pressure, rotational speed, and viscosity of the working fluid by using the cam type test apparatus. Leakage is also measured considering piston tilting. The characteristics of the volumetric efficiency are analyzed with respect to various operating conditions and leakage is also analyzed according to the piston tilting angle. Results are applicable to improve the design of an axial type piston pump.

Experimental Study for Thermal Performance of Hybrid Air-Water Heater Using Solar Energy during Heating Medium Working Simultaneously (복합형 태양열 가열기 열매체 동시운전시의 열적 성능에 관한 실험적 연구)

  • Choi, Kwang-Hwan;Yoon, Jung-In;Son, Chang-Hyo;Choi, Hwi-Ung;Kim, Bu-Ahn
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.3
    • /
    • pp.115-121
    • /
    • 2014
  • With increment on interesting about improving renewable energy efficiency, many research have been conducted and the research about hybrid air-water heater using solar energy that can make heating air and hot water has been conducted also. In this experiment, the temperature difference and thermal efficiency were investigated when two heating medium(air and liquid) was working simultaneously. As a result, thermal efficiency showed 44% to 88% when these heating medium was working simultaneously depending on operation condition and it is better than traditional solar collector. Also possibility of application into building equipment also was confirmed based on temperature and thermal efficiency. But necessity of additional studies about proper operation condition according to purpose of use and heat load was confirmed because change of thermal efficiency by air velocity and flux of liquid was shown a huge difference.

Relationship Between Farm Land Structure and Machine Efficiency

  • Singh, Gajendra;Ahn, Duck-Hyun
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.119-128
    • /
    • 1993
  • Effective machine capacity is affected by the physical and geometrical conditions of the fields. In the small and scattered farmland structure field efficiency is greatly influenced by plot geometry. In this paper, a method for estimating field efficiency and effective machine capacity was developed . The developed method was applied to Korean paddy cultivation. Various time elements related to farm operations for small and scattered plots are discussed in this paper . Available working time is divided into two parts, viz. the preparation time for machine operation and actual working time. Two kinds of machine efficiencies, namely , Machine Efficiency 1, applicable on a single large plot or set of well consolidated plots ; and Machine Efficiency 2, applicable on small and scattered multiple plots, are considered. Based assumptions made and steps followed to construct the model are discussed. Effective capacity of each machine based on different plot geometries are calculated y the model. Machine efficiency on a single plot increases with increase in the dimension of longer side of the plot . Low speed, low theoretical capacity machines have higher machine efficiency which is only slightly influenced by plot geometry. As plot geometry is improved , the machine efficiency of high speed, high capacity machines increases rapidly. The effects of short side length and plot size on machine efficiency on a single plot depend on the type of farm operation. For a particular plot shape, as plot size increases, machine efficiency on multiple plots increases rapidly. The effects of consolidation on machine efficiency is highly significant if the plot size is small and/or machine size is large.

  • PDF

Selection of Working fluid for the Organic Rankine Cycle to Utilize Low-Temperature Waste Heat (저온 폐열을 이용하기 위한 유기랭킨 사이클의 작동유체 선정에 관한 연구)

  • Cho, Soo-Yong;Cho, Chong-Hyun
    • New & Renewable Energy
    • /
    • v.10 no.4
    • /
    • pp.36-46
    • /
    • 2014
  • Low-grade heats are wasted even though an amount of their energy is huge. In the small and medium industrial complex sites, large amount of low-grade thermal energy generated during the manufacturing process is wasted if it is not used directly for building heating or air-conditioning. In order to utilize this waste thermal energy more efficiently, organic Rankine cycle (ORC) was adopted. The range of operating temperature of ORC was set to $60^{\circ}C$ from $30^{\circ}C$ applicable low-temperature waste heat. A study was conducted to select an appropriate organic working fluid based on these operating conditions. More than 60 working fluids were screened. Eleven working fluids were selected based on the requirements as working fluid for ORC such as environmentally friendly, safety, and good operation on the expander. Finally, six working fluids were selected by considering the operating temperature ranges. Then, a cycle analysis was conducted with these six working fluids. As a results, R-245fa and R-134a appeared as appropriate working fluids for ORC operating at low-temperature condition based on the system efficiency and the turbine output power.

Experimental Study on Fluid Viscosity Effects for Centrifugal Turbopump Efficiency (유체점성에 따른 원심형 터보펌프 효율에 관한 실험적 연구)

  • Kim, Jin-Sun;Choi, Chang-Ho;Ko, Youngsung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.6
    • /
    • pp.91-100
    • /
    • 2016
  • Efficiency characteristics of centrifugal turbopumps for a liquid rocket engine were investigated. Predicting the performance of pumps for a turbopump assembly test, the variation on pump efficiency by working fluids was analyzed from pump component tests. Water and liquid nitrogen (LN2) were used for the component test, kerosene (Jet A-1) and liquid oxygen (LOX) were adapted for the turbopump assembly (TPU) test as working fluids. Overall performance of the pumps was investigated covering design/off-design operating points and the pump efficiency on the environment of real media (LOX/kerosene) could be modified from the pump component tests.

A Study on the Standard Working Area by Somatometria (인체계측(人體計測)에 의(依)한 표준작업역(標準作業域)의 연구(硏究))

  • Lee, Sang-Do;Jeong, Jung-Hui
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.2 no.1
    • /
    • pp.61-78
    • /
    • 1976
  • The purpose of this study is to establish the horizontal and vertical working area which is dependent on measuring value of workers, body in order to make easy and stable working environments, and then to design the size of machines, tools and instruments in production factory because of making the practical production conditions which is the most suitable to human characteristics. But there is necessity that we have to review numeric value of measurement periodically because the size of workers' body is variable according to periodic and social circumstances. The establishment of standard working area after measurement enable us to make the best working conditions and we can design standard working table, optimum size of all machines and tools in production activity. Therefore, we can also acknowledge the importance of studying on human engineering because human engineering is necessary to reduction of fatigue in working, saving workers from industrial accidents, fail-safe system, improvement of productivity with increase in efficiency and etc. Finally, this study informs us that numeric value of measurement is larger than that of Japan, but not than that of America and Germany. So we can establish standard working area which is the most suitable for Korean inherence after measurement of detailed parts for workers' body.

  • PDF