• Title/Summary/Keyword: work-at-height

Search Result 336, Processing Time 0.025 seconds

Fabrication of Hierarchical Nanostructures Using Vacuum Cluster System

  • Lee, Jun-Young;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.389-390
    • /
    • 2012
  • In this study, we fabricate a superhydrophobic surface made of hierarchical nanostructures that combine wax crystalline structure with moth-eye structure using vacuum cluster system and measure their hydrophobicity and durability. Since the lotus effect was found, much work has been done on studying self-cleaning surface for decades. The surface of lotus leaf consists of multi-level layers of micro scale papillose epidermal cells and epicuticular wax crystalloids [1]. This hierarchical structure has superhydrophobic property because the sufficiently rough surface allows air pockets to form easily below the liquid, the so-called Cassie state, so that the relatively small area of water/solid interface makes the energetic cost associated with corresponding water/air interfaces smaller than the energy gained [2]. Various nanostructures have been reported for fabricating the self-cleaning surface but in general, they have the problem of low durability. More than two nanostructures on a surface can be integrated together to increase hydrophobicity and durability of the surface as in the lotus leaf [3,5]. As one of the bio-inspired nanostructures, we introduce a hierarchical nanostructure fabricated with a high vacuum cluster system. A hierarchical nanostructure is a combination of moth-eye structure with an average pitch of 300 nm and height of 700 nm, and the wax crystalline structure with an average width and height of 200 nm. The moth-eye structure is fabricated with deep reactive ion etching (DRIE) process. $SiO_2$ layer is initially deposited on a glass substrate using PECVD in the cluster system. Then, Au seed layer is deposited for a few second using DC sputtering process to provide stochastic mask for etching the underlying $SiO_2$ layer with ICP-RIE so that moth-eye structure can be fabricated. Additionally, n-hexatriacontane paraffin wax ($C_{36}H_{74}$) is deposited on the moth-eye structure in a thermal evaporator and self-recrystallized at $40^{\circ}C$ for 4h [4]. All of steps are conducted utilizing vacuum cluster system to minimize the contamination. The water contact angles are measured by tensiometer. The morphology of the surface is characterized using SEM and AFM and the reflectance is measured by spectrophotometer.

  • PDF

Health Risk Factors of Nurses in the Operating Room (수술실간호사의 건강위험요인)

  • Noh, Won Ja
    • Korean Journal of Occupational Health Nursing
    • /
    • v.7 no.1
    • /
    • pp.55-64
    • /
    • 1998
  • In order to investigate and compare the health risk factors of nurses in the operating room(OR nurse) and ward (WARD nurse), the questionnaire survey for subjective symptoms was carried out on 553 nurses(132 OR nurses and 421 WARD nurses) who were employed at seven hospital. The self-administered questionnaries were composed of low back pain, subjective fatigue symptoms, musculo-skeletal symptoms, psychological stress and reproductive function. The results were as follows : 1. In the type of working posture and working environment, there were significant difference between two groups for working posture, waist form, height of working table, satisfaction of chair, lifting & carring. 2. Job satisfaction, duration of work, height of working table, satisfaction of chair, lifting & carring were significantly associated the low back pain. 3. In the complaints of subjective fatigue symptoms, the total mean score was higher in OR nurse than WARD nurse, but there was not significant. The items that the mean score of OR nurse was significantly higher than WARD nurse were 'head feels muddled', 'apt to forget', 'feel choky'. 4. In the complaints of musculo-skeletal syrrptoms, the total mean score was higher in OR nurse than WARD nurse, but there was not significant. The item that the mean score of OR nurse was significantly higher WARD nurse was 'wrist discomfort or pain'. 5. The comparison of spontatenous abortion in married nurses who had the experience of pregnancy were significantly associated the stress risk group. 6. In all of OR and Ward nurses, the job satisfaction is associated with subjective fatigue symptoms, musculo-skeletal symptoms, and stress. In conclusion, it suggested that working posture, working environment, stress, and job satisfaction were health risk factors of nurses working in the operating room. Further prospective intervention studies should be conducted to educate right working posture, improve of working environment, decrease of stress, and increase of job satisfaction.

  • PDF

Laser-induced chemical vapor deposition of micro patterns for TFT-LCD circuit repair (레이저 국소증착을 이용한 TFT-LCD 회로수정 패턴제조)

  • Park Jong-Bok;Jeong Sungho;Kim Chang-Jae;Park Sang-Hyuck;Shin Pyung-Eun;Kang Hyoung-Shik
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.657-662
    • /
    • 2005
  • In this study, the deposition of micrometer-scale metallic interconnects on LCD glass for the repair of open-circuit type defects is investigated. Although there had been a few studies Since 1980 s for the deposition of metallic interconnects by laser-induced chemical vapor deposition, those studies mostly used continuous wave lasers. In this work, a third harmonic Nd:YLF laser (351nm) of high repetition rates, up to 10 KHz, was used as the illumination source and $W(CO)_6$ was selected as the precursor. General characteristics of the metal deposit (tungsten) such as height, width, morphology as well as electrical properties were examined for various process conditions. Height of the deposited tungsten lines ranged from 35 to 500 nm depending on laser power and scan speed while the width was controlled between $3\~50{\mu}$ using a slit placed in the beam path. The resistivity of the deposited tungsten lines was measured to be below 1 $O\cdot{\mu}m$, which is an acceptable value according to the manufacturing standard. The tungsten lines produced at high scan speed had good surface morphology with little particles around the patterns. Experimental results demonstrated that it is likely that the deposit forms through a hybrid process, namely through the combination of photolytic and pyrolytic mechanisms.

  • PDF

Optimization for Precast Prestressed Wide-U Beams with the Least Depth (최소깊이 프리캐스트 프리스트레스트 U형보의 최적화)

  • Yul Sung-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.1 s.79
    • /
    • pp.18-26
    • /
    • 2004
  • The cost of underground work is a dominant factor to determine the total construction fee. It is generally 2 ${\~}$ 2.5 times higher than that of above ground for building with the same height. 'A new precast prestressed framing plan for underground parking building' was suggested with the beam of the least depth - U-type beams. The depth of regular rectangular reinforced concrete beam which is currently used in the underground parking of apartments could be reduced up to 12 ${\~}$ 34cm/story due to the development of a U-beams from the optimum process. Two full scale prototype U-beams were tested in this study. It was found that the Wide U-beams in the test showed higher strength than calculated nominal and design, however need to provide temporary supports to meet the flexural moment of construction load at the simply supported state before the lopping concrete hardens.

Laser-induced chemical vapor deposition of tungsten micro patterns for TFT-LCD circuit repair (레이저 국소증착을 이용한 TFT-LCD회로 수정5 미세 텅스텐 패턴 제조)

  • Park Jong-Bok;Kim Chang-Jae;Park Sang-Hyuck;Shin Pyung-Eun;Kang Hyoung-Shik;Jeong Sung-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.8 s.173
    • /
    • pp.165-173
    • /
    • 2005
  • This paper presents the results for deposition of micrometer-scale metal lines on glass for the development of TFT-LCD circuit repair-system. Although there had been a few studies in the late 1980's for the deposition of metallic interconnects by laser-induced chemical vapor deposition, those studies mostly used continuous wave lasers. In this work, a third harmonic Nd:YLF laser (351nm) of high repetition rates, up to 10 KHz, was used as the illumination source and W(CO)s was selected as the precursor. General characteristics of the metal deposit (tungsten) such as height, width, morphology as well as electrical properties were examined for various process conditions. Height of the deposited tungsten lines ranged from 35 to 500 m depending on laser power and scan speed while the width was controlled between 50um using a slit placed in the beam path. The resistivity of the deposited tungsten lines was measured to be below $1{\Omega}{\cdotu}um$, which is an acceptable value according to the manufacturing standard. The tungsten lines produced at high scan speed had good surface morphology with little particles around the patterns. Experimental results demonstrated that it is likely that the deposit forms through a hybrid process, namely through the combination of photolytic and pyrolytic mechanisms.

Estimation of the load-deformation responses of flanged reinforced concrete shear walls

  • Wang, Bin;Shi, Qing-Xuan;Cai, Wen-Zhe;Peng, YI-Gong
    • Structural Engineering and Mechanics
    • /
    • v.73 no.5
    • /
    • pp.529-542
    • /
    • 2020
  • As limited well-documented experimental data are available for assessing the attributes of different deformation components of flanged walls, few appropriate models have been established for predicting the inelastic responses of flanged walls, especially those of asymmetrical flanged walls. This study presents the experimental results for three large-scale T-shaped reinforced concrete walls and examines the variations in the flexural, shear, and sliding components of deformation with the total deformation over the entire loading process. Based on the observed deformation behavior, a simple model based on moment-curvature analysis is established to estimate flexural deformations, in which the changes in plastic hinge length are considered and the deformations due to strain penetration are modeled individually. Based on the similar gross shapes of the curvature and shear strain distributions over the wall height, a proportional relationship is established between shear displacement and flexural rotation. By integrating the deformations due to flexure, shear, and strain penetration, a new load-deformation analytical model is proposed for flexure-dominant flanged walls. The proposed model provides engineers with a simple, accurate modeling tool appropriate for routine design work that can be applied to flexural walls with arbitrary sections and is capable of determining displacements at any position over the wall height. By further simplifying the analytical model, a simple procedure for estimating the ultimate displacement capacity of flanged walls is proposed, which will be valuable for performance-based seismic designs and seismic capacity evaluations.

Whole-body Vibration Exposure of Drill Operators in Iron Ore Mines and Role of Machine-Related, Individual, and Rock-Related Factors

  • Chaudhary, Dhanjee Kumar;Bhattacherjee, Ashis;Patra, Aditya Kumar;Chau, Nearkasen
    • Safety and Health at Work
    • /
    • v.6 no.4
    • /
    • pp.268-278
    • /
    • 2015
  • Background: This study aimed to assess the whole-body vibration (WBV) exposure among large blast hole drill machine operators with regard to the International Organization for Standardization (ISO) recommended threshold values and its association with machine- and rock-related factors and workers' individual characteristics. Methods: The study population included 28 drill machine operators who had worked in four opencast iron ore mines in eastern India. The study protocol comprised the following: measurements of WBV exposure [frequency weighted root mean square (RMS) acceleration ($m/s^2$)], machine-related data (manufacturer of machine, age of machine, seat height, thickness, and rest height) collected from mine management offices, measurements of rock hardness, uniaxial compressive strength and density, and workers' characteristics via face-to-face interviews. Results: More than 90% of the operators were exposed to a higher level WBV than the ISO upper limit and only 3.6% between the lower and upper limits, mainly in the vertical axis. Bivariate correlations revealed that potential predictors of total WBV exposure were: machine manufacturer (r = 0.453, p = 0.015), age of drill (r = 0.533, p = 0.003), and hardness of rock (r = 0.561, p = 0.002). The stepwise multiple regression model revealed that the potential predictors are age of operator (regression coefficient ${\beta}=-0.052$, standard error SE = 0.023), manufacturer (${\beta}=1.093$, SE = 0.227), rock hardness (${\beta}=0.045$, SE = 0.018), uniaxial compressive strength (${\beta}=0.027$, SE = 0.009), and density (${\beta}=-1.135$, SE = 0.235). Conclusion: Prevention should include using appropriate machines to handle rock hardness, rock uniaxial compressive strength and density, and seat improvement using ergonomic approaches such as including a suspension system.

Anti-seismic behavior of composite precast utility tunnels based on pseudo-static tests

  • Yang, Yanmin;Tian, Xinru;Liu, Quanhai;Zhi, Jiabo;Wang, Bo
    • Earthquakes and Structures
    • /
    • v.17 no.2
    • /
    • pp.233-244
    • /
    • 2019
  • In this work, we have studied the effects of different soil thicknesses, haunch heights, reinforcement forms and construction technologies on the seismic performance of a composite precast fabricated utility tunnel by pseudo-static tests. Five concrete specimens were designed and fabricated for low-cycle reciprocating load tests. The hysteretic behavior of composite precast fabricated utility tunnel under simulated seismic waves and the strain law of steel bars were analyzed. Test results showed that composite precast fabricated utility tunnel met the requirements of current codes and had good anti-seismic performance. The use of a closed integral arrangement of steel bars inside utility tunnel structure as well as diagonal reinforcement bars at its haunches improved the integrity of the whole structure and increased the bearing capacity of the structure by about 1.5%. Increasing the thickness of covering soil within a certain range was beneficial to the earthquake resistance of the structure, and the energy consumption was increased by 10%. Increasing haunch height within a certain range increased the bearing capacity of the structure by up to about 19% and energy consumption by up to 30%. The specimen with the lowest haunch height showed strong structural deformation with ductility coefficient of 4.93. It was found that the interfaces of haunches, post-casting self-compacting concrete, and prefabricated parts were the weak points of utility tunnel structures. Combining the failure phenomena of test structures with their related codes, we proposed improvement measures for construction technology, which could provide a reference for the construction and design of practical projects.

The Effects of Work Characteristics of Grapes-harvesting Tasks on the Wrist and Elbow Angles (포도 수확 작업의 작업특성에 따른 손목과 팔꿈치 각도 영향 분석)

  • Kim, Jihye;Lee, Inseok
    • Journal of the Ergonomics Society of Korea
    • /
    • v.36 no.5
    • /
    • pp.589-599
    • /
    • 2017
  • Objective: The objective of this study was to measure the upper-limb motions and postures of grapes-harvesting tasks using electrical goniometers and analyze the upper-limb motions in a kinematic way to assess the risk of musculoskeletal disorders. Background: Grapes farmers are exposed to various risk factors of musculoskeletal disorders (MSDs) such as repetitive upper-limb motions, non-neutral postures, and manual handling of heavy items. The farmers have to use scissors repetitively while harvesting grapes with their being arms elevated over the shoulder height, which presumed to increase the physical workload. It has been reported that the grapes farmers feel the harvesting task as the one of the hardest work in cultivating grapes. We tried measure the wrist and elbow angles while the farmers were carrying out harvesting tasks to understand how much workload the work impose on the farmers, which can be helpful in making interventions of preventing musculosksletal disorders among grapes farmers. Method: We measured joint angles at the right wrist and elbow with a wireless measuring system with two electrical goniometers from five grape farmers. The grapes-harvesting task was classified into 6 different subtasks: 1) searching, 2) picking, 3) cleaning, 4) carrying, 6) storing, and 7) miscellaneous tasks. The subtasks were compared by mean angles, 10%, 50%, and 90% APDF values of wrist flexion/extension, ulnar/radial deviation, and elbow flexion. Results: The Kruskal-Wallis tests showed that the 10th percentiles of APDF of ulnar/radial deviation and flexion/extension of the wrist significantly differs among subtasks (p<0.05). It was found that the farmers assumed more deviated wrist postures in the ulnar direction when they picking and adjusting the grapes. The use of scissors seemed to force the farmers to severely bend their wrist in the directions of ulnar deviation and flexion. The grapes-harvesting task showed similar wrist postures and motion with poultry deboning and milking tasks. Conclusion: The grapes harvesting tasks make the farmers take ulnar deviated and extended postures in the wrist. The use of scissors makes them take more severely deviated postures in the wrist. Safety guidelines including use of ergonomic scissors can be provided to the farmers to improve their work conditions. Application: The results of this study can be used as a basic data for the development of safety guidelines for agricultural work.

Distribution of High Mountain Plants and Species Vulnerability Against Climate Change (한반도 주요 산정의 식물종 분포와 기후변화 취약종)

  • Kong, Woo-Seok;Kim, Kunok;Lee, Slegee;Park, Heena;Cho, Soo-Hyun
    • Journal of Environmental Impact Assessment
    • /
    • v.23 no.2
    • /
    • pp.119-136
    • /
    • 2014
  • This work aims to select the potentially vulnerable plant species against climate change at alpine and subalpine belts of Mts. Sorak, Jiri, and Halla, from central, southern, southern insular high mountains of the Korean Peninsula, respectively. The selection of global warming related vulnerable plants were performed by adapting various criteria, such as flora, endemicity, rarity, floristically specific and valuable species, species composition at mountain summits, horizontal and vertical ranges of individual species, and their distributional pattern in the Korean Peninsula. Line and quadrat field surveys along the major trails from all directions at height above 1,500 meters above sea level of Mts, Sorak, Jiri and Halla were conducted each year during spring, summer, and autumn from 2010 to 2011. Based upon above mentioned eight criteria, high level of climate change related potentially vulnerable arboral plants, such as Rhododendron aureum, Taxus caespitosa, Pinus pumila, Oplopanax elatus, Vaccinium uliginosum, and Thuja koraiensis are noticed from at subalpine belt of Mt. Sorak. Species of Abies koreana, Rhododendron tschonoskii, Oplopanax elatus, Taxus cuspidata, Picea jezoensis, and Juniperus chinensis var. sargentii belong to climate change concerned vulnerable species at subalpine belt of Mt. Jiri. High level of climate change related species vulnerability is found at alpine and subalpine belts of Mt. Halla from Diapensia lapponica var. obovata, Salix blinii, Empetrum nigrum var. japonicum, Vaccinium uliginosum, Juniperus chinensis var. sargentii, Taxus cuspidata, Rhamnus taquetii, Abies koreana, Hugeria japonica, Prunus buergeriana, and Berberis amurensis var. quelpartensis. Countermeasures to save the global warming vulnerable plants in situ are required.