• Title/Summary/Keyword: work space

Search Result 2,779, Processing Time 0.03 seconds

KVN SOURCE-FREQUENCY PHASE-REFERENCING OBSERVATION OF 3C 66A AND 3C 66B

  • ZHAO, GUANG-YAO;JUNG, TAEHYUN;DODSON, RICHARD;RIOJA, MARIA;SOHN, BONG WON
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.629-631
    • /
    • 2015
  • In this proceedings, preliminary results of the KVN Source-Frequency Phase-Referencing (SFPR) observation of 3C 66A and 3C 66B are presented. The motivation of this work is to measure the core-shift of these 2 sources and study the temporal evolution of the jet opacity. Two more sources were observed as secondary reference calibrators and each source was observed at 22, 43, and 86 GHz simultaneously. Our preliminary results show that after using the observations at the lower frequency to calibrate those at the higher frequency of the same source, the residual visibility phases for each source at the higher frequencies became more aligned, and the coherence time became much longer; also, the residual phases for different sources, within 10 degrees angular separations, follow similar trends. After reference to the nearby calibrator, the SFPRed maps were obtained as well as the astrometric measurements, i.e. the combined coreshift. The measurements were found to be affected by structural blending effects because of the large beamsize of KVN, but this can be corrected with higher resolution maps (e.g. KAVA maps).

Observational Arc-Length Effect on Orbit Determination for KPLO Using a Sequential Estimation Technique

  • Kim, Young-Rok;Song, Young-Joo;Bae, Jonghee;Choi, Seok-Weon
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.295-308
    • /
    • 2018
  • In this study, orbit determination (OD) simulation for the Korea Pathfinder Lunar Orbiter (KPLO) was accomplished for investigation of the observational arc-length effect using a sequential estimation algorithm. A lunar polar orbit located at 100 km altitude and $90^{\circ}$ inclination was mainly considered for the KPLO mission operation phase. For measurement simulation and OD for KPLO, the Analytical Graphics Inc. Systems Tool Kit 11 and Orbit Determination Tool Kit 6 software were utilized. Three deep-space ground stations, including two deep space network (DSN) antennas and the Korea Deep Space Antenna, were configured for the OD simulation. To investigate the arc-length effect on OD, 60-hr, 48-hr, 24-hr, and 12-hr tracking data were prepared. Position uncertainty by error covariance and orbit overlap precision were used for OD performance evaluation. Additionally, orbit prediction (OP) accuracy was also assessed by the position difference between the estimated and true orbits. Finally, we concluded that the 48-hr-based OD strategy is suitable for effective flight dynamics operation of KPLO. This work suggests a useful guideline for the OD strategy of KPLO mission planning and operation during the nominal lunar orbits phase.

Analysis on Delta-Vs to Maintain Extremely Low Altitude on the Moon and Its Application to CubeSat Mission

  • Song, Young-Joo;Lee, Donghun;Kim, Young-Rok;Jin, Ho;Choi, Young-Jun
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.3
    • /
    • pp.213-223
    • /
    • 2019
  • This paper analyzes delta-Vs to maintain an extremely low altitude on the Moon and investigates the possibilities of performing a CubeSat mission. To formulate the station-keeping (SK) problem at an extremely low altitude, current work has utilized real-flight performance proven software, the Systems Tool Kit Astrogator by Analytical Graphics Inc. With a high-fidelity force model, properties of SK maneuver delta-Vs to maintain an extremely low altitude are successfully derived with respect to different sets of reference orbits; of different altitudes as well as deadband limits. The effect of the degree and order selection of lunar gravitational harmonics on the overall SK maneuver strategy is also analyzed. Based on the derived SK maneuver delta-V costs, the possibilities of performing a CubeSat mission are analyzed with the expected mission lifetime by applying the current flight-proven miniaturized propulsion system performances. Moreover, the lunar surface coverage as well as the orbital characteristics of a candidate reference orbit are discussed. As a result, it is concluded that an approximately 15-kg class CubeSat could maintain an orbit (30-50 km reference altitude having ${\pm}10km$ deadband limits) around the Moon for 1-6 months and provide almost full coverage of the lunar surface.

Characteristics of the Ionospheric Mid-Latitude Trough Measured by Topside Sounders in 1960-70s

  • Hong, Junseok;Kim, Yong Ha;Lee, Young-Sook
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.3
    • /
    • pp.121-131
    • /
    • 2019
  • The ionospheric mid-latitude trough (IMT) is the electron density depletion phenomenon in the F region during nighttime. It has been suggested that the IMT is the result of complex plasma processes coupled to the magnetosphere. In order to statistically investigate the characteristics of the IMT, we analyze topside sounding data from Alouette and ISIS satellites in 1960s and 1970s. The IMT position is almost constant for seasons and solar activities whereas the IMT depth ratio and the IMT feature are stronger and clearer in the winter hemisphere under solar minimum condition. We also calculated transition heights at which the densities of oxygen ions and hydrogen/helium ions are equal. Transition heights are generally higher in daytime and lower in nighttime, but the opposite aspects are seen in the IMT region. Utilizing the Incoherent Scatter Radar (ISR) electron temperature measurements, we find that the electron temperature in the IMT region is enhanced at night during winter. The increase of electron temperature may cause fast transport of the ionospheric plasma to the magnetosphere via ambipolar diffusion, resulting in the IMT depletion. This mechanism of the IMT may work in addition to the simply prolonged recombination of ions proposed by the traditional stagnation model.

Comparison of Wall Thinning Analysis Results between CHECWORKS and ToSPACE (CHECWORKS와 ToSPACE 프로그램의 배관감육 해석결과 비교)

  • Hwang, Kyeongmo;Yun, Hun;Seo, Hyeokki
    • Corrosion Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.317-323
    • /
    • 2018
  • Assumptions have always been that wall thinning on the secondary side piping in nuclear power plants is mostly caused by Flow-Accelerated Corrosion (FAC). Recent studies have showed that wall thinning on the secondary side piping is caused by Liquid Droplet Impingement Erosion (LDIE), Solid Particle Erosion (SPE), cavitation, and flashing. To manage those aging mechanisms, several software such as CHECWORKS, COMSY, and BRT-CICERO have been used in nuclear power plants. Korean nuclear power plants have been using the CHECWORKS program since 1996 to date. However, many site engineers have experienced a lot of inconveniences and problems in using the CHECWORKS program. In order to work through the inconveniences and to remedy problems, KEPCO-E&C has developed a "3D-based pipe wall thinning management program (ToSPACE)" based on the experience of over 30 years in relation to the pipe wall thinning management. This study compares the results of FAC and LDIE analysis using both the CHECWORKS and ToSPACE programs with respect to validation of the wall thinning analysis results.

Korea Pathfinder Lunar Orbiter Flight Dynamics Simulation and Rehearsal Results for Its Operational Readiness Checkout

  • Song, Young-Joo;Bae, Jonghee;Hong, SeungBum;Bang, Jun
    • Journal of Astronomy and Space Sciences
    • /
    • v.39 no.4
    • /
    • pp.181-194
    • /
    • 2022
  • Korea Pathfinder Lunar Orbiter (KPLO), also known as Danuri, was successfully launched on 4 Aug. from Cape Canaveral Space Force Station using a Space-X Falcon-9 rocket. Flight dynamics (FD) operational readiness was one of the critical parts to be checked before the flight. To demonstrate FD software's readiness and enhance the operator's contingency response capabilities, KPLO FD specialists planned, organized, and conducted four simulations and two rehearsals before the KPLO launch. For the efficiency and integrity of FD simulation and rehearsal, different sets of blind test data were prepared, including the simulated tracking measurements that incorporated dynamical model errors, maneuver execution errors, and other errors associated with a tracking system. This paper presents the simulation and rehearsal results with lessons learned for the KPLO FD operational readiness checkout. As a result, every functionality of FD operation systems is firmly secured based on the operation procedure with an enhancement of contingency operational response capability. After conducting several simulations and rehearsals, KPLO FD specialists were much more confident in the flight teams' ability to overcome the challenges in a realistic flight and FD software's reliability in flying the KPLO. Moreover, the results of this work will provide numerous insights to the FD experts willing to prepare deep space flight operations.

ISudden brightness enhancements on main-belt objects

  • Yang, Hongu;Lee, Hee-Jae;Lee, Mingyeong;Kim, Dong-Heun;Ishiguro, Masateru;Moon, Hong-Kyu;JeongAhn, Youngmin;Choi, Young-Jun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.46.2-46.2
    • /
    • 2020
  • Dust ejection activities have been discovered from a few tens of asteroids since the first confirmation in 2006. Those objects are known as active asteroids. They provide good observational chances to study ongoing phenomena in the solar system such as sublimation of icy volatiles, mutual collisions among asteroids, rotational disintegrations, thermal fatigue, etc. Although dust ejection mechanisms of individual cases have been investigated through observations, the frequencies of the events and their connection to the overall evolutionary budget of the solar system have not yet been studied thoroughly, mainly because previous studies were based on serendipitous discoveries without any systematic surveys of these objects. In this work, we made wide-field monitoring observations of asteroids using Korea Microlensing Telescope Network (KMTNet) during the 2018/2019 winter season. Among 3,644 asteroids in the field-of-view, we detected nine candidates of brightness enhancements which we suspect as possible activities. It is still possible that some of those brightness increases have caused by long-term rotations. However, our observed frequency and brightness enhancements size-frequency distribution agrees with the expectations from impacts with decimeter sized objects, when the main belt objects size-frequency distribution observed down to decameter sized bodies are extrapolated to decimeter size.

  • PDF

Simulated squirrel search algorithm: A hybrid metaheuristic method and its application to steel space truss optimization

  • Pauletto, Mateus P.;Kripka, Moacir
    • Steel and Composite Structures
    • /
    • v.45 no.4
    • /
    • pp.579-590
    • /
    • 2022
  • One of the biggest problems in structural steel calculation is the design of structures using the lowest possible material weight, making this a slow and costly process. To achieve this objective, several optimization methods have been developed and tested. Nevertheless, a method that performs very efficiently when applied to different problems is not yet available. Based on this assumption, this work proposes a hybrid metaheuristic algorithm for geometric and dimensional optimization of space trusses, called Simulated Squirrel Search Algorithm, which consists of an association of the well-established neighborhood shifting algorithm (Simulated Annealing) with a recently developed promising population algorithm (Squirrel Search Algorithm, or SSA). In this study, two models are tried, being respectively, a classical model from the literature (25-bar space truss) and a roof system composed of space trusses. The structures are subjected to resistance and displacement constraints. A penalty function using Fuzzy Logic (FL) is investigated. Comparative analyses are performed between the Squirrel Search Algorithm (SSSA) and other optimization methods present in the literature. The results obtained indicate that the proposed method can be competitive with other heuristics.