TRACE FORMULAS ON FINITE GROUPS

JAE-HYUN YANG

ABSTRACT. In this paper, we study the right regular representation R_{Γ} of a finite group G on the vector space consisting of vector valued functions on $\Gamma \backslash G$ with a subgroup Γ of G and give a trace formula using the work of M. -F. Vignéras.

1. Introduction

Following the suggestion of D. Kazhdan, James Arthur proved the so-called local trace formula for a reductive group G(F) over a non-archimedean local field F investigating the regular representation of $G(F) \times G(F)$ on the Hilbert space $L^2(G(F))$ (cf. [1]-[4]). Motivated by the work of J. Arthur on the local trace formula, M. -F. Vignéras (cf. [10]) gave a trace formula for the regular representation of $G \times G$ in $L^2(G)$ for a finite group G. In this paper, motivated by the above mentioned work of M. -F. Vignéras, we study the trace formula of the right regular representation R_{Γ} of a finite group G on the vector space of consisting of all vector valued functions on the coset space $\Gamma \setminus G$ for a subgroup Γ . We derive the trace formula for $R_{\Gamma}(f)$ using the result of M. -F. Vignéras (cf. [10]). This trace formula simplifies the proofs of the well known results on a finite group.

In this paper, we shall study the right regular representation R of G on the vector space $V[\Gamma \backslash G]$ consisting of all vector valued functions on $\Gamma \backslash G$ with values in V and give a trace formula for $R_{\Gamma}(f)$ with a function f on G. Using this formula, we derive some well known results.

NOTATION. We denote by \mathbb{C} the complex number field. For a finite set A, we denote by |A| the cardinality of A. For a finite group G, we denote

Received April 25, 2005.

²⁰⁰⁰ Mathematics Subject Classification: Primary 20C05, 20C15.

Key words and phrases: finite groups, the regular representation, trace formulas. This work was supported by Inha University Research Grant (Inha-22792).

by \hat{G} the set of all equivalence classes of irreducible representations of G. For $\lambda \in \hat{G}$, we let d_{λ} be the degree of λ .

2. Trace formula

Let Γ be a subgroup of a finite group G. Let V be a finite dimensional complex vector space. We let $X_{\Gamma} = \Gamma \backslash G$ and denote by V_{Γ} the vector space consisting of all vector valued functions $\varphi : X_{\Gamma} \longrightarrow V$. We note that G acts on X_{Γ} transitively by right multiplication. We let R_{Γ} be the right regular representation of G on V_{Γ} , namely,

$$(R_{\Gamma}(g)\varphi)(x) = \varphi(xg), \quad g \in G, \ \varphi \in V_{\Gamma} \text{ and } x \in X_{\Gamma}.$$

For any $g \in G$, we set $X_{\Gamma}^g = \{ x \in X_{\Gamma} \mid xg = x \}$.

THEOREM 1. Let G, Γ , V_{Γ} , X_{Γ} and X_{Γ}^g be as above. We let $\chi_{R_{\Gamma}}$ be the character of the regular representation R_{Γ} of G. For each $\lambda \in \hat{G}$, we let χ_{λ} be the character of λ . We assume that $R_{\Gamma} = \sum_{\lambda \in \hat{G}} m_{\lambda}(\Gamma, V)\lambda$ is the decomposition of R_{Γ} into irreducibles. Here $m_{\lambda}(\Gamma, V)$ denotes the multiplicity of λ in R_{Γ} . Then

(1)
$$\chi_{R_{\Gamma}}(g) = \dim_{\mathbb{C}} V \cdot |X_{\Gamma}^g| \quad \text{for all } g \in G,$$

(2)
$$m_{\lambda}(\Gamma, V) = \frac{\dim_{\mathbb{C}} V}{|G|} \sum_{g \in G} |X_{\Gamma}^{g}| \chi_{\lambda}(g^{-1}) \text{ for each } \lambda \in \hat{G},$$

(3)
$$|G|^2 = |\Gamma| \sum_{\lambda \in \hat{G}} \sum_{g \in G} d_{\lambda} |X_{\Gamma}^g| \chi_{\lambda}(g^{-1}).$$

For a function $f \in \mathbb{C}[G]$, we define the endomorphism $R_{\Gamma}(f)$ of V_{Γ} by

$$R_{\Gamma}(f) = \sum_{g \in G} f(g) R_{\Gamma}(g).$$

Then for a function $f \in \mathbb{C}[G]$,

(4)
$$\operatorname{tr} R_{\Gamma}(f) = \dim_{\mathbb{C}} V \cdot \sum_{g \in G} f(g) |X_{\Gamma}^{g}|,$$

and for any $f_1, f_2 \in \mathbb{C}[G]$,

(5)
$$\operatorname{tr} R_{\{1\}}(f_1 * f_2) = \sum_{\lambda \in \hat{G}} d_{\lambda} \operatorname{tr} (\mathcal{F} f_1(\lambda) \mathcal{F} f_2(\lambda)).$$

Here $f_1 * f_2$ denotes the convolution of f_1 and f_2 defined by

$$(f_1 * f_2)(g) = \sum_{h \in G} f_1(h) f_2(h^{-1}g), \qquad g \in G,$$

 d_{λ} is the degree of λ and $\mathcal{F}f(\lambda)$ is the Fourier transform of f defined by

$$\mathcal{F}f(\lambda) = \sum_{g \in G} f(g) \lambda(g), \quad \lambda \in \hat{G}.$$

PROOF. We let V[X] be the set of all functions $\phi: X \longrightarrow V$ with values in V. We describe a basis for the vector space V[X] and its dual basis. If $V = \mathbb{C}$, the vector space $\mathbb{C}[X]$ has a basis $\{\delta_x \mid x \in X\}$, where

$$\delta_x(y) := \begin{cases} 1 & \text{if } x = y, \\ 0 & \text{otherwise.} \end{cases}$$

For $x \in X$ and $v \in V$, we define the function $\delta_x \otimes v : X \longrightarrow V$ by

$$(\delta_x \otimes v)(y) := \begin{cases} v & \text{if } x = y, \\ 0 & \text{otherwise.} \end{cases}$$

Let $\{v_1, \ldots, v_n\}$ be a basis for V with $\dim_{\mathbb{C}} V = n$. Then it is easy to see that the set $\{\delta_x \otimes v_k \mid x \in X, \ 1 \leq k \leq n\}$ forms a basis for V[X]. Let V^* be the dual space of V. For $x \in X$ and $v^* \in V^*$, we define the linear functional $\delta_x^* \otimes v^* : V[X] \longrightarrow \mathbb{C}$

$$(\delta_x^* \otimes v^*)(\phi) := \langle \phi(x), v^* \rangle, \quad \phi \in V[X].$$

Suppose $\{v_1^*, \ldots, v_n^*\}$ is the dual basis of a basis $\{v_1, \ldots, v_n\}$. Then we see easily that the set $\{\delta_x^* \otimes v_k^* \mid x \in X, \ 1 \leq k \leq n\}$ forms a basis for the dual space $V[X]^*$. We also see that for each $g \in G$,

$$\langle R_{\Gamma}(g)(\delta_x \otimes v_k), (\delta_x^* \otimes v_k^*) \rangle = \begin{cases} 1 & \text{if } xg = x, \\ 0 & \text{otherwise.} \end{cases}$$

Therefore

 $\chi_{R_{\Gamma}}(g) = \operatorname{tr} R_{\Gamma}(g) = n \cdot |X_{\Gamma}^{g}|$ for each $g \in G$. This proves Formula (1).

We define the hermitian inner product < , > on the group algebra $\mathbb{C}[G]$ by

$$\langle f_1, f_2 \rangle = \frac{1}{|G|} \sum_{g \in G} f_1(g) \overline{f_2(g)}, \quad f_1, f_2 \in \mathbb{C}[G].$$

Since
$$\chi_{R_{\Gamma}} = \sum_{\lambda \in \hat{G}} m_{\lambda}(\Gamma, V) \chi_{\lambda}$$
, we have $m_{\lambda}(\Gamma, V)$

$$= \langle \chi_{R_{\Gamma}}, \chi_{\lambda} \rangle$$

(by Schur orthogonality relation (cf. [6], p. 148))

$$= \frac{1}{|G|} \sum_{g \in G} \chi_{R_{\Gamma}}(g) \, \chi_{\lambda}(g^{-1}) = \frac{n}{|G|} \sum_{g \in G} |X_{\Gamma}^{g}| \, \chi_{\lambda}(g^{-1}). \text{ (by (1))}$$

This proves Formula (2).

We observe that

(6)
$$\dim_{\mathbb{C}} V_{\Gamma} = \frac{|G|}{|\Gamma|} \cdot \dim_{\mathbb{C}} V.$$

Since $R_{\Gamma} = \sum_{\lambda \in \hat{G}} m_{\lambda}(\Gamma, V) \lambda$, we see that

(7)
$$\dim_{\mathbb{C}} V_{\Gamma} = \sum_{\lambda \in \hat{G}} m_{\lambda}(\Gamma, V) \cdot d_{\lambda},$$

where d_{λ} denotes the degree of $\lambda \in \hat{G}$. By substituting (2) into (7), we get

(8)
$$\dim_{\mathbb{C}} V_{\Gamma} = \frac{\dim_{\mathbb{C}} V}{|G|} \cdot \sum_{\lambda \in \hat{G}} \sum_{g \in G} d_{\lambda} |X_{\Gamma}^{g}| \chi_{\lambda}(g^{-1}).$$

Therefore according to (6) and (8), we obtain Formula (3).

Let $f \in \mathbb{C}[G]$. Then we obtain

$$\operatorname{tr} R_{\Gamma}(f) = \operatorname{tr} \left(\sum_{g \in G} f(g) R_{\Gamma}(g) \right) = \sum_{g \in G} f(g) \operatorname{tr} (R_{\Gamma}(g))$$
$$= \sum_{g \in G} f(g) \chi_{R_{\Gamma}}(g)$$
$$= \dim_{\mathbb{C}} V \cdot \sum_{g \in G} f(g) |X_{\Gamma}^{g}|. \quad (\text{by } (1))$$

This proves Formula (4).

Finally we shall prove Formula (5). If we take $\Gamma = \{1\}$, then $X_{\Gamma}^1 = G$ and $X_{\Gamma}^g = \emptyset$ if $g \neq 1$. Thus by Formula (4), we get

$$\operatorname{tr} R_{\{1\}}(f) = \dim_{\mathbb{C}} V \cdot |G| f(1).$$

Therefore

(9)
$$f(1) = \frac{\operatorname{tr} R_{\{1\}}(f)}{|G| \dim_{\mathbb{C}} V}.$$

We recall the fact (see [6], Corollary 3.4.5) that for any $f_1, f_2 \in \mathbb{C}[G]$, the following Plancherel formula holds:

(10)
$$(f_1 * f_2)(1) = \frac{\operatorname{tr} R(f_1 * f_2)}{|G|} = \frac{1}{|G|} \sum_{\lambda \in \widehat{G}} d_{\lambda} \operatorname{tr}_{V_{\lambda}} (\mathcal{F} f_1(\lambda) \mathcal{F} f_2(\lambda)),$$

where $\operatorname{tr}_{V_{\lambda}}(A)$ denotes the trace of an endomorphism $A:V_{\lambda}\longrightarrow V_{\lambda}$ with the representation space of λ .

On the other hand, for any $f_1, f_2 \in \mathbb{C}[G]$, we get

(11)
$$(f_1 * f_2)(1) = \frac{\operatorname{tr} R_{\{1\}}(f_1 * f_2)}{|G|}$$
 (by (9)).

Hence according to (10) and (11), we obtain Formula (5).

COROLLARY 2. (a) $|G| = \sum_{\lambda \in \hat{G}} d_{\lambda}^2$.

- (b) $|G| = \sum_{g \in G} \sum_{\lambda \in \hat{G}} d_{\lambda} \chi_{\lambda}(g^{-1}).$ (c) Let λ_0 be the trivial representation of G. Then

$$m_{\lambda_0}(\Gamma, V) = rac{dim_{\mathbb{C}}\,V}{|G|} \cdot \sum_{g \in G} |X_{\Gamma}^g|.$$

In particular, $m_{\lambda_0}(\{1\}, \mathbb{C}) = 1$.

(d) For any $f \in \mathbb{C}[G]$,

$$f(1) = \frac{\operatorname{tr} R_{\{1\}}(f)}{|G| \cdot \dim_{\mathbb{C}} V}.$$

(e) For a subgroup Γ of G,

$$\sum_{\lambda \in \hat{G}} m_{\lambda}(\Gamma, V)^{2} = \frac{(\dim_{\mathbb{C}} V)^{2}}{|G|} \cdot \sum_{g \in G} |X_{\Gamma}^{g}| |X_{\Gamma}^{g^{-1}}|.$$

- (f) For each $\lambda \in \hat{G}$, $m_{\lambda}(\{1\}, V) = d_{\lambda} \dim_{\mathbb{C}} V \neq 0$. That is, each $\lambda \in \hat{G}$ occurs in the regular representation $(R_{\{1\}}, V[G])$ of G with multiplicity $d_{\lambda} \cdot \dim_{\mathbb{C}} V$.
 - (g) For each $\lambda \in \hat{G}$,

$$\sum_{g \in G} \chi_{\lambda}(g) = \frac{|G|}{\dim_{\mathbb{C}} V} \cdot m_{\lambda}(G, V).$$

PROOF. (a) If we take $\Gamma=\{1\}$, we see easily that $X^1_{\{1\}}=G$ and $X^g_{\{1\}}=\emptyset$ if $g\neq 1$. Then we get

$$|G|^2 = 1 \cdot \sum_{\lambda \in \hat{G}} d_{\lambda} \cdot |X_{\{1\}}^1| \cdot \chi_{\lambda}(1) \qquad \text{(by (3))}$$
$$= |G| \sum_{\lambda \in \hat{G}} d_{\lambda}^2. \qquad \text{(because } \chi_{\lambda}(1) = d_{\lambda})$$

This proves Formula (a). We recall that another proof of (a) follows from the fact that the group algebra $\mathbb{C}[G]$ is isomorphic to $\sum_{\lambda \in \hat{G}} \operatorname{End}(V_{\lambda})$ as algebras, where V_{λ} is the representation space of $\lambda \in \hat{G}$ (cf. [9]).

(b) We take $\Gamma = G$. It is easy to see that $X_G = \{\overline{1}\}$ is a point and $X_G^g = X_G$ for all $g \in G$. According to Formula (3), we obtain

$$|G|^2 = |G| \sum_{\lambda \in \hat{G}} \sum_{g \in G} d_{\lambda} \chi_{\lambda}(g^{-1}).$$

This proves the statement (b).

- (c) It follows from Formula (2).
- (d) We take $\Gamma = \{1\}$. Then $X_{\Gamma}^1 = G$ and $X_{\Gamma}^g = \emptyset$ for $g \neq 1$. From Formula (4), we obtain

$$\operatorname{tr} R_{\{1\}}(f) = \dim_{\mathbb{C}} V \cdot |G| f(1).$$

(e) By Schur orthogonality relation, $\langle \chi_{R_{\Gamma}}, \chi_{R_{\Gamma}} \rangle = \sum_{\lambda \in \hat{G}} m_{\lambda}(\Gamma, V)^2$. On the other hand, according to the formula (1),

$$\begin{split} <\chi_{R_{\Gamma}},\,\chi_{R_{\Gamma}}> &= \frac{1}{|G|}\,\sum_{g\in G}\chi_{R_{\Gamma}}(g)\chi_{R_{\Gamma}}(g^{-1})\\ &= \frac{(\dim_{\mathbb{C}}V)^2}{|G|}\cdot\sum_{g\in G}|X_{\Gamma}^g|\,|X_{\Gamma}^{g^{-1}}|. \end{split}$$

(f) We take $\Gamma = \{1\}$. Then $X_{\{1\}}^1 = G$, $X_{\{1\}}^g = \emptyset$ for $g \neq 1$, and $V_{\{1\}} = V[G]$. Therefore we obtain the desired result from Formula (2).

(g) We take $\Gamma = G$. We see easily that $|X_G^g| = 1$ for all $g \in G$. According to Formula (2), we get

$$m_{\lambda}(G, V) = \frac{\dim_{\mathbb{C}} V}{|G|} \sum_{g \in G} \chi_{\lambda}(g^{-1}) = \frac{\dim_{\mathbb{C}} V}{|G|} \sum_{g \in G} \chi_{\lambda}(g).$$

Hence this proves the statement (g).

THEOREM 3. For each $f \in \mathbb{C}[G]$, we have the following trace formula

(12)
$$\operatorname{tr} R_{\Gamma}(f) = \frac{\dim_{\mathbb{C}} V}{|G|} \cdot \sum_{g \in G} |X_{\Gamma}^{g}| |Z_{g}| f(C_{g}),$$

where Z_g is the centralizer of g in G, C_g is the conjugacy class of g and $f(C_g) = \sum_{h \in C_g} f(h)$.

PROOF. For $f \in \mathbb{C}[G]$ and $\lambda \in \hat{G}$, we define

$$\lambda(f) := \sum_{g \in G} f(g)\lambda(g).$$

Investigating the spectral decomposition of the regular representation R of $G \times G$ on $\mathbb{C}[G]$ defined by

$$(R(g_1, g_2)F)(g) = F(g_1^{-1}gg_2), \quad g, g_1, g_2 \in G, \ F \in \mathbb{C}[G].$$

M. -F. Vignéras (cf. [10], p.284) obtained the following trace formula

(13)
$$|Z_g|F(C_g) = \sum_{\pi \in \hat{G}} \chi_{\pi}(g^{-1}) \operatorname{tr} \pi(F)$$

for any $g \in G$ and $F \in \mathbb{C}[G]$.

Let $R_{\Gamma} = \sum_{\lambda \in \hat{G}} m_{\lambda}(\Gamma, V) \lambda$ be the decomposition of R_{Γ} into irreducibles. If $f \in \mathbb{C}[G]$,

$$\operatorname{tr} R_{\Gamma}(f) = \sum_{\lambda \in \hat{G}} m_{\lambda}(\Gamma, V) \operatorname{tr} \lambda(f)$$

$$= \frac{\dim_{\mathbb{C}} V}{|G|} \sum_{\lambda \in \hat{G}} \sum_{g \in G} |X_{\Gamma}^{g}| \chi_{\lambda}(g^{-1}) \operatorname{tr} \lambda(f) \quad \text{(by (2))}$$

$$= \frac{\dim_{\mathbb{C}} V}{|G|} \sum_{g \in G} |X_{\Gamma}^{g}| \left(\sum_{\lambda \in \hat{G}} \chi_{\lambda}(g^{-1}) \operatorname{tr} \lambda(f) \right)$$

$$= \frac{\dim_{\mathbb{C}} V}{|G|} \cdot \sum_{g \in G} |X_{\Gamma}^{g}| |Z_{g}| f(C_{g}).$$

П

The last equality follows from Formula (13).

COROLLARY 4. Let Γ be a subgroup of G. Then for any $f \in \mathbb{C}[G]$, we have the following identity

(13)
$$|G| \sum_{g \in G} f(g)|X_{\Gamma}^g| = \sum_{g \in G} |X_{\Gamma}^g||Z_g|f(C_g),$$

where Z_g is the centralizer of g in G, C_g is the conjugacy class of g and $f(C_g) = \sum_{h \in C_g} f(h)$.

PROOF. The proof follows immediately from Formula (4) and the trace formula (12). \Box

REMARK 5. The trace formula (12) is similar to the trace formula on the adele group. For the trace formula on the adele group, we refer to [1]-[5], [7], and [8].

REMARK 6. If $\Gamma \neq \{1\}$, the multiplicity $m_{\lambda}(\Gamma, V)$ of some $\lambda \in \hat{G}$ may be zero. It is natural to ask when $m_{\lambda}(\Gamma, V)$ is not zero. Namely, which $\lambda \in \hat{G}$ does occur in the regular representation (R_{Γ}, V_{Γ}) of G?

References

- J. Arthur, The trace formula and Hecke operators: Number theory, trace formulas and discrete groups (Oslo, 1987), Academic Press (1989), 11–27.
- [2] _____, Towards a local trace formula: algebraic analysis, geometry and number theory (Baltimore, MD, 1988), Johns Hopkins Univ. Press, Baltimore, MD (1989), 1-23.
- [3] ______, Some problems in local harmonic analysis: harmonic Analysis on reductive groups (Brunswick, ME, 1989), Prog. Math. Birkhäuser, Boston vol 101 (1991), 57–78.
- [4] _____, A local trace formula, IHES Publication Math. 73 (1991), 5–96.
- [5] S. Gelbart, Lectures on Arthur-Selberg Trace Formula, American Math. Soc., Providence, 1996.
- [6] R. Goodman and N. Wallach, Representations and Invariants of the Classical Groups, Cambridge University Press, 1998.
- [7] A. W. Knapp, Theoretical Aspect of the Trace Formula for GL(2), Proc. Symosia in Pure Math., American Math. Soc. 61 (1997), 355-405.
- [8] A. W. Knapp and J. D. Rogawski, Applications of the Trace Formula, Proc. Symosia in Pure Math., American Math. Soc. 61 (1997), 413-431.
- [9] J.-P. Serre, Linear representations of finite groups, Springer-Verlag, 1977.
- [10] M. -F. Vignéras, An elementary introduction to the local trace formula of J. Arthur. The case of finite groups, Jber. d. Dt. Math.-Verein., Jubiläumstagung 1990, B.G. Teubner Stuttgart (1992), 281–296.

Department of Mathematics Inha University Incheon 402-751, Korea *E-mail*: jhyang@inha.ac.kr