• Title/Summary/Keyword: work pressure

Search Result 2,347, Processing Time 0.028 seconds

Actors' Challenging Journey to Self-discoveries in Building a Character (배우의 자아발견을 향한 여정과 인물구축을 위한 도전)

  • Kim, Jun-Sam;Kim, Hak-Min
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.9
    • /
    • pp.57-67
    • /
    • 2012
  • There is much confusion with the relationship between character and actor. Under the pressure of 'becoming' a character, the actor tends to begin his work apart from his own senses, imagination and memory, and is most likely to fall into the trap of artificiality and clich$\acute{e}$. Like every other art, the actor has to begin honestly with himself who, in nature, has unfathomable possibilities. To be and live as a character, the actor has to experience. To experience, to react. To react, to see with all the senses. Like ours, each character's life goes on from reaction to reaction, reacting to the images from the imagination and the memory. "You are what you see." The actor is put into the extremely unfamiliar circumstances of drama, given only with his own senses, imagination and memory. Fear comes in. However, fear cannot stop the actor's challenging journey to self-discoveries. The actor does and acts, not because he is certain but because he is not. The actor challenges himself to go beyond the limit and uncertainty, so that he will finally come to know and truly understand human beings from the challenges of his own. In a nutshell, acting is a journey to the unknown and the unfamiliar in which the actor unceasingly discover new 'I's.

Behaviors of Glucose Decomposition during Dilute-Acid Hydrolysis of Lignocellulosic Biomass (목질계 바이오매스의 묽은 산 가수분해 공정에서 포도당 분해물 거동)

  • Jeong, Tae-Su;Oh, Kyeong-Keun
    • KSBB Journal
    • /
    • v.24 no.3
    • /
    • pp.267-272
    • /
    • 2009
  • During a dilute acid hydrolysis, degradation products are formed or liberated by pre-treatment of lignocelluloses depend on both the biomass and the pretreatment conditions such as temperature, time, pressure, pH, redox conditions, and addition of catalysts. In lignocellulosic biomass, sugars can be degraded to furfural which is formed from pentoses and 5-hydroxymethulfurfural (HMF) from hexoses. 5-HMF can be further degraded, forming levulinic acid and formic acid. Acetate is liberated from hemicellulose during hydrolysis. Some decomposed compounds hinder the subsequent bioconversion of the solubilized sugars into desired products, reducing conversion yields and rates during fermentation. In the present work, samples of rapeseed strawwere hydrolyzed to study the optimal pretreatment condition by assessing yields of sugars and decomposed products obtained under different reaction conditions ($H_2SO_4$ 0.5-1.25% (w/w), reaction time 0-20 min and temperature range 150-220 C). A careful analytical investigation of acid hydrolyzate of rapeseed straw has not yet been undertaken, and a well-closed mass balance for the hydrolyzate in general is necessary to verify the productivity and economic predictions for this process.

Study of a Supercritical Fluid Process for the Preparation of Hydroxypropyl-β-cyclodextrin Inclusion Complexes (Hydroxypropyl-β-cyclodextrin 포접복합체 제조를 위한 초임계유체 공정 연구)

  • Lee, Sang-Yun;Kim, Jeong-Kyu;Kim, Woo-Sik;Ryu, Jong-Hoon;Lim, Gio-Bin
    • Korean Chemical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.110-117
    • /
    • 2005
  • In this work, solid-state inclusion complex powders of itraconazole and $2-hydroxypropyl-{\beta}-cyclodextrin(HP-{\beta}-CD)$ were produced by a supercritical anti-solvent (SAS) process. In order to evaluate the degree of complexation, the thermal behavior of the microparticulate complexes was investigated using differential scanning calorimetry. The experimental results obtained for the solubility and dissolution rate of the microparticulate inclusion complexes in a buffer solution of pH 1.2 showed that the complexation of itraconazole with $HP-{\beta}-CD$ results in a significant increase in the solubility and dissolution rate of itraconazole. The particle size of the SAS-produced inclusion complexes was dramatically reduced ($<0.1-0.5{\mu}m$) compared with untreated itraconazole ($30-50{\mu}m$) and $HP-{\beta}-CD$ ($50-100{\mu}m$). The solubility of itraconazole was increased with the increase of pressure at a constant temperature to ca. $758.6{\mu}g/mL$ in an aqueous medium of pH 1.2. The dissolution rate of itraconazole was observed to be significantly improved and about 90% of itraconazole was found to be dissolved within 5-10 min.

Estimation of Application on the Site of SRC Method for the Ground Reinforcement in Marine Clay (해성점토층에서 SRC 지반보강에 관한 현장적용성 평가)

  • Lee, Seungjun;Lee, Seogyoung;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.1
    • /
    • pp.23-32
    • /
    • 2013
  • Currently, the west coast has focused on large-scale investment and development, such as harbor construction work and land reclamation projects, with soft ground grouting issues being the major concern. In addition, grouting for soft ground reinforcement is definitely considered that construction purpose, soil condition, construction situation, and construction costs. The SRC method, which is a high pressure injection method, can easily produce well-distributed strength regardless of soil characteristics and is environmentally friendly. Therefore in this study, the SRC method was applied to marine clay on the west coast where located Jeongok-ri, Seosin-myeon, Hwaseong-si, Gyeonggi-do, Korea as well as estimated of the ground reinforcement and the application on the site. The results of the application on the site by SRC method indicated age 28 day strength is $14,700{\sim}31,800kN/m^2$ which is satisfied the criterion of unconfined compressive strength that more than $5,333kN/m^2$. Therefore the result that the SRC method constructed marine clay on the west coast indicated the outstanding strength as well as excellent durability.

Analysis on Impact Factors of Open-cut Type Excavation Work using Numerical Analysis Method (수치해석기법을 이용한 개착식 지반굴착공사의 영향인자 분석)

  • Seong, Joo-Hyun;Kim, Yong-Soo;Shin, Byoung-Gil
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.3
    • /
    • pp.43-53
    • /
    • 2013
  • In this study, an analysis about the causes of different types of excavation on accidents is required in order to prevent the frequently occurring accidents related to the earth retaining structure and excavation. Also, analysis of influence was performed by using numerical typical soil conditions and construction trend using numerical analysis method. According to the analysis results of 25 accident cases, the main influence factors were found as following: insufficient of soil survey, instability of temporary facility and lack of groundwater treatment, etc. Furthermore, in the numerical analysis result of 22 cases, drainage method was occurred larger settlement than waterproof method in the Inland. In case of applying the earth anchor method, it needs more detailed in the regions, which are discovered soft ground or rock discontinuities. Also, The consolidated clay absolutely needs further consideration of excess hydrostatic pressure.

Study on the Necessity of Energy Recovery Device in Small Scale Reverse Osmosis Desalination Plant (소규모 역삼투 담수화 시설에서 에너지 회수장치의 필요성에 대한 연구)

  • Jeon, Jongmin;Kwak, Kyungsup;Kim, Noori;Jung, Jaehak;Son, Dong-Min;Kim, Suhan
    • Korean Chemical Engineering Research
    • /
    • v.55 no.6
    • /
    • pp.762-766
    • /
    • 2017
  • Energy recovery device (ERD) is used to save energy consumption in seawater reverse osmosis processes. However, small-scale ERDs (<$100m^3/d$) are hardly observed in seawater desalination market. In South Korea, most of seawater desalination plants for drinking water production are small-scaled and have been operated in island areas or on ships. Thus, the effect of ERDs for these small-scale SWRO processes should not be neglected. In this work, the small-scale SWRO processes are designed and analyzed in terms of energy consumption with/without ERD. The realistic efficiencies of high pressure pumps are considered for the energy analyses. The unit cost of electricity depending on the application place (e.g., inland and island areas, on ships) is investigated to calculate the energy cost for unit water production in various SWRO applications classified by plant capacity, application place, and the installation of ERD. As a result, the energy cost can be saved up to $1,640.4KRW/m^3$ when ERD is applied, and the saving effect increases at smaller plants on ships. In conclusion, the development of small-scale ERDs are necessary because small-scale SWRO processes are dominant in Korean seawater desalination market, and the electricity saving effect becomes higher at smaller-scaled system.

Polymeric Material Application for The Production of Ceramic Foam Catalyst

  • Sangsuriyan, Anucha;Yeetsorn, Rungsima;Tungkamani, Sabaithip;Sornchamni, Thana
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.1
    • /
    • pp.21-30
    • /
    • 2015
  • Ceramic foams are prepared as positive images corresponding to a plastic foam structure which exhibits high porosities (85-90%). This structure makes the ceramic foams attractive as a catalyst in a dry reforming process, because it could reduce a high pressure drop problem. This problem causes low mass and heat transfers in the process. Furthermore, the reactants would shortly contact to catalyst surface, thus low conversion could occur. Therefore, this research addressed the preparation of dry reforming catalysts using a sol-gel catalyst preparation via a polymeric sponge method. The specific objectives of this work are to investigate the effects of polymer foam structure (such as porosity, pore sizes, and cell characteristics) on a catalyst performance and to observe the influences of catalyst preparation parameters to yield a replica of the original structure of polymeric foam. To accomplish these objectives industrial waste foams, polyurethane (PU) and polyvinyl alcohol (PVA) foams, were used as a polymeric template. Results indicated that the porosity of the polyurethane and polyvinyl alcohol foams were about 99% and 97%. Their average cell sizes were approximate 200 and 50 micrometres, respectively. The cell characteristics of polymer foams exhibited the character of a high permeability material that can be able to dip with ceramic slurry, which was synthesized with various viscosities, during a catalyst preparation step. Next, morphology of ceramic foams was explored using scanning electron microscopy (SEM), and catalyst properties, such as; temperature profile of catalyst reduction, metal dispersion, and surface area, were also characterized by $H_2-TPR$ and $H_2-TPD$ techniques, and BET, respectively. From the results, it was found that metal-particle dispersion was relatively high about 5.89%, whereas the surface area of ceramic foam catalysts was $64.52m^2/g$. Finally, the catalytic behaviour toward hydrogen production through the dry reforming of methane using a fixed-bed reactor was evaluated under certain operating conditions. The approaches from this research provide a direction for further improvement of marketable environmental friendly catalyst production.

Effects of phenylephrine-induced PKC activation on Mg2+ release in guinea pig heart and isolated ventricular myocytes (기니픽 심장과 심근세포에서 Phenylephrine에 의한 PKC 활성화가 Mg2+ 유리에 미치는 영향)

  • Chang, Sung-eun;Kang, Hyung-sub;Kim, Jin-sang
    • Korean Journal of Veterinary Research
    • /
    • v.38 no.1
    • /
    • pp.29-42
    • /
    • 1998
  • $Mg^{2+}$ is one of the most abundant divalent cations in mammalian body(0.2~1.0mM) and the important physiological roles are : first, the cofactor of many enzyme activities, second, the regulator of glycolysis and DNA synthesis, third, the important role of bioenergetics by regulating of phosphorylation, fourth, the influence of cardiac metabolism and function. In this work we have investigated the regulation of the $Mg^{2+}$ induced by ${\alpha}_1-adrenoceptor$ stimulation in perfused guinea pig hearts and isolated myocytes. The $Mg^{2+}$ content of the perfusate or the supernatant was measured by atomic absorbance spectrophotometry. The elimination of $Mg^{2+}$ in the medium increased the force of contraction of right ventricular papillary muscles, and the left ventricular pressure. Phenylephrine also enhanced the force of contraction in the presence of $Mg^{2+}-free$ medium. ${\alpha}_1-Agonists$ such as phenylephrine and methoxamine were found to induce $Mg^{2+}$ efflux in both perfused hearts and myocytes. These effects were blocked by prazosin, an ${\alpha}_1-adrenoceptor$ antagonist. The $Mg^{2+}$ influx could also be induced by phenylephrine and R59022, a diacylglycerol kinase inhibitor. In the presence of protein kinase C(PKC) inhibitors, phenylephrine produced an increase in $Mg^{2+}$ efflux from perfused hearts. Furthermore, $Mg^{2+}$ efflux by phenylephrine was amplified by phorbol 12-myristate 13-acetate(PMA). This enhancement of $Mg^{2+}$ efflux by PMA was blocked by prazosin in perfused hearts. By contrast, the $Mg^{2+}$ influx could be induced by verapamil, nifedipine, ryanodine in perfused hearts, but not in myocytes. $W^7$, a $Ca^{2+}$/calmodulin antagonist, completely blocked the phenylephrine-induced $Mg^{2+}$ efflux in perfused hearts. In conclusion, $Mg^{2+}$ is responsible for the cardiac activity associated with ${\alpha}_1-adrenoceptor$ stimulation. The mobilization of $Mg^{2+}$ is decreased or increased by ${\alpha}_1-adrenoceptor$ stimulation in guinea pig hearts. These responses may be related specifically to the respective pathways of signal transduction. A decrease in $Mg^{2+}$ efflux by ${\alpha}_1-adrenoceptor$ stimulation in hearts can be through PKC dependent and intracellular $Ca^{2+}$ levels.

  • PDF

A Study on Percent Agent in Pipe as a Criterion to Evaluate Limitations and Performance of Gaseous Fire Extinguishing Systems (가스계 소화설비의 제한사항 및 성능평가를 위한 배관 내 약제비율에 관한 연구)

  • Son, Bong-Sei;Kim, Hee-Woo
    • Fire Science and Engineering
    • /
    • v.21 no.4
    • /
    • pp.1-11
    • /
    • 2007
  • This study aims to investigate, review, and summarize the definition, development, and applications of "percent agent in pipe", "percent of agent in pipe" which is used as a key factor in testing and evaluating the performance of gaseous fire extinguishing agents, including Halon 1301 and $CO_2$. This study also analyzes and compares the local and international standards on testing and evaluating the performance of gaseous fire extinguishing systems, as well as the results of system performance tests conducted as a part of performance evaluation and approval programs for gaseous fire extinguishing systems, especially, Korean Gaseous Fire Extinguishing System Performance Approval Program called KFI Approval. Percent agent in pipe was defined first in NFPA 12A, Standard on Halon 1301 Fire Extinguishing Systems, dating back to the 1970's. After the phaseout of Halon 1301 systems in 1994 in the developed countries, the percent agent in pipe has been widely used in Halon 1301 alternative clean agent fire extinguishing systems, both halocarbon clean agent systems and inert gas clean agent systems, as an essential criterion to assure the system design accuracy, determine the limitations and performance of a system, and to predict the system performance results accurately, especially, in association with their system flow calculations. Underwriters Laboratories has their own standards such as UL 2127 and 2166 applying percent agent in pipe in testing and evaluating the performance of clean agent fire extinguishing systems. As a part of a system performance test and approval program called KFI Approval System, Korea also has started to apply the percent agent in pipe as a key factor to test, evaluate, and approve the performance of gaseous fire extinguishing systems, including both high and low pressure $CO_2$ systems, from the early 2000's. This study outlines and summarizes the relevant UL and KFI standards and also describes the actual test resultant data, including the maximum percents of agent in pipe for gaseous fire extinguishing systems. As evidenced in lots of tests conducted as a part of the system performance test and approval programs like KFI Approval System, it has been proven that the percent agent in pipe may work as a key factor in testing, evaluating, and determining the limitations and performance of gaseous fire extinguishing systems, especially compared with the hydraulic flow calculations of computer design programs of gaseous fire extinguishing systems, and will remain as such in the future. As one thing to note, however, there are some difficulties in using the unified percent agent in pipe to determine the maximum lengths of pipe networks for gaseous fire extinguishing systems, because the varying definitions used by some of the flow calculations (not in accordance with NFPA 12A definition) make it impossible to do any direct comparison of pipe lengths based on percent agent in pipe.

Preparation and Evaluation of $PGE_1$ Transurethral Suppositories (프로스타글란딘 $E_1$ 요도좌제의 제조 및 평가)

  • Kim, Jong-Oh;Quan, Qi-Zhe;Rhee, Jong-Dal;Choi, Han-Gon;Yong, Chul-Soon
    • Journal of Pharmaceutical Investigation
    • /
    • v.30 no.3
    • /
    • pp.173-178
    • /
    • 2000
  • The purpose of this work is to develop a transurethral suppository containing prostaglandin $E_1\;(PGE_1)$, which stabilizes the drug, gives no irritation to physiological body and enhances the erectile response of $PGE_1.\;PGE_1$ transurethral suppositories were prepared with various amounts of compositions such as saturated polyglycolysed glyceride $(Suppocire^{\circledR}\;AP,\;SAP)$, polyoxyethylene hydrogenated castor oil (HCO-50) and ethanol. The melting points, viscosities and $PGE_1$ release of the suppositories were investigated. Ocular irritation test was carried out after application of $PGE_1$ suppository to rabbit's eye. The intracavernous pressure (ICP), penile length and duration of erectile response were determined after transurethral administration of $PGE_1$ suppository and compared with those after intracavernosal injection of $PGE_1$ solution to cats. HCO-50 hardly affected the melting points and viscosities of $PGE_1$ suppositories. Additionally, $PGE_1$ transurethral suppositories, whose melting point ranges was $34-35^{\circ}C$, was speedily melted in physiological body. HCO-50 significantly decreased the dissolution rates of $PGE_1$ from the suppositories. Dissolution mechanism analysis showed the release of $PGE_1$ was proportional to the square root of time, indicating that $PGE_1$ might be released from the suppositories by Fickian diffusion. The release rate of $PGE_1$ from $PGE_1$ suppository [PGE1/SAP/HCO-50/ethanol (1/94.5/2.5/2%)] was about 80% within 2 h. This $PGE_1$ suppository gave no significant irritation to the ocular tissue, expecting that it gave no irritation to the urethral tissue less sensive than ocular tissue. Furthermore, $PGE_1$ in this suppository was stable at $4^{\circ}C$ for 2 years. This suppository increased the ICP and penile erection similar to those of injectable $PGE_1$ solution. However, it gave 2.5-fold increased duration of erectile response than injectable $PGE_1$ solution. Our results suggested that it gave more effective erectile response than injectable $PGE_1$ solution in cats. It is concluded that this $PGE_1$ suppository with good safety, excellent stability and enhanced erectile response, could be a more effective and convenient transurethal delivery system of $PGE_1$.

  • PDF