• 제목/요약/키워드: work pressure

검색결과 2,332건 처리시간 0.026초

확산각이 밸브 트림 특성에 미치는 영향 (The Effect of Divergence Angle on the Control Valve Trim Characteristics)

  • 고태식;김귀순
    • 한국유체기계학회 논문집
    • /
    • 제16권1호
    • /
    • pp.32-39
    • /
    • 2013
  • The multi-stage control valve is one of the devices which controls cavitation and high pressure drop. To attain the high pressure drop, the conventional control valves adopted the multi-stage trim to avoid the occurrence of local cavitation in valves. This work studied the effect of divergence angle on the characteristics of multi-stage trim. Pressure drop and flow characteristics was calculated for the 1 passage of multi-staged trim by using the FLUENT 6.3.26. The result showed that the pressure drop is significantly influenced by the divergence angle of multi-stage trim. In addition, the pressure drop increased consistently as the Reynolds number and divergence angle increases.

직분식 가솔린기관 인젝터의 연료 분무 특성 (Fuel Spray Characteristics of GDI Injector)

  • 권상일;이창식
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2000년도 제21회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.194-201
    • /
    • 2000
  • This paper is intended to analyze the macroscopic behavior and transient atomization characteristics of the high-pressure gasoline injector in direct-injection gasoline engine. The global spray behavior of fuel injector was visualized by shadowgraph technique. Time-resolved droplet axial and radial velocity components and droplet diameter were measured at many probe positions in both axial and radial directions by a two-component phase Doppler particle analyzer (PDPA). In order to obtain the influence of fuel injection pressure, the macroscopic visualization and experiment of particle measurement on the fuel spray were investigated at 3,5 and 7 MPa of injection pressure under different surrounding pressure in the spray chamber. The results of this work show that the fuel injection pressure of gasoline injector in GDI engine has influence upon the mean droplet diameter, mean velocity of spray droplet, the spray tip penetration, and spray width under the elevated ambient pressure.

  • PDF

촉매를 고려한 배압 계산에서의 인자 결정 연구 (Parameter Study of Exhaust Pressure in Catalytic Converter)

  • 이원근;임효재
    • 한국자동차공학회논문집
    • /
    • 제11권5호
    • /
    • pp.77-82
    • /
    • 2003
  • A parametric study was conducted on pressure drop in a catalytic converter for automobile. In this work, we proposed a new pressure drop relation which contains the various parameters needed to calculate and got a few results. In a monolith of catalyst, the flow originally turbulent flow changes to laminar flow and thus the pressure drop through the monolith is linearly proportional to the velocity. The exhaust pressure is doubly affected by the increase of mean velocity and length when we decrease the diameter of monolith while the volume keeps constant. Theoretical parameters such as $\alpha$ and $\beta$ are suggested to use as a reference value when there is no a experimental data. Especially in the part load test, these values should be modified to consider the property change of exhaust gas.

인공위성 추진기관 설계변수 도출을 위한 Hydrazine 액체 추진제의 비정상 유동해석 (Unsteady Flow Analysis of Liquid Hydrazine Propellant for the Design Parameter Derivation of Satellite Propulsion System)

  • 최진철;김정수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.497-501
    • /
    • 2000
  • One of the way to derive design parameters of the fuel feeding system in satellite is to analyze unsteady flow of liquid propellant (hydrazine) in the propulsion system. During steady thruster firing the flow rate is constant: if a thruster valve is abruptly shut down among a sets of thrusters, pressure spikes much higher than the initial tank pressure occur. This renders the fuel flow unsteady, and the fluid pressure and flow rate to oscillate. If the pressure spikes are high enough, there are possibilities that propellant explosively decomposes, thruster valves are damaged, and adiabatic detonation of the hydrazine propellant is potentially incurred. Reflected shockwaves could also affect the calibration and operation of the pressure transducers. These necessitate the analysis of unsteady flow in the propulsion system design, and the calculation results obtained through some governing parameter variation are presented in this work.

  • PDF

정압을 이용한 직교류팬 주변의 소음 예측 (Estimation of Noise Level near Cross Bow Fan by Measurements of Static Pressure.)

  • 김재원;조용;정윤영
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.1156-1161
    • /
    • 2001
  • A significant trial has been performed for estimation of noise level of a cross flow fan for air conditioning system. In general, measurements of noise level of machinery require rigorous equipment involving an anechoic chamber with precision gauges. The apparatus is expensive to utilize and is not easy to construct. In this work, we adopt static pressure sensing from an ordinary pressure transducer for prediction of noise level of a rotating fan. The present procedure is finding sound pressure from the static pressure by manipulating Light-Curle equation depicts noisy energy in terms of pressure on surfaces of noise generators. Sound power level near core unit of the fan is evaluated with the present methodology in a normal laboratory room without any sound absorbers. The method is easy and shows good prediction results compared with precise measurements by using microphones.

  • PDF

커먼레일식 직분식 가시화 디젤엔진의 파일럿 분사 연소 및 Soot 분포 특성에 관한 연구 (A Study on the Combustion Characteristic and Soot Distribution of a Common Rail Type D.I.Diesel Visualized Engine with Pilot Injection)

  • 한용택;이재용;이기형
    • 한국연소학회지
    • /
    • 제8권3호
    • /
    • pp.31-37
    • /
    • 2003
  • The objective of this work is to investigate the effect of swirl, injection pressure and pilot injection on D.I.Diesel combustion by using a transparent engine system. The test engine is equipped with common rail injection system to obtain high pressure and to control injection timing and duration. In this study, the combustion analysis and steady flow test were conducted to estimate the heat release rate from in-cylinder pressure and pilot injection was investigated by using LII technique. As the results, high injection pressure was found to shorten ignition delay as well as enhance peak pressure and heat release rate was greatly affected by injection timing and pilot injection. In addition, the results showed that the period of soot formation corresponded to the diffusion flame.

  • PDF

압축강도 평가를 위한 지능형 응력예측기 구축 (Construction of the Intelligence Stress Predictor for Compression Strength Evaluation)

  • 박원규;우영환;이종구;윤인식
    • 한국공작기계학회논문집
    • /
    • 제10권6호
    • /
    • pp.95-101
    • /
    • 2001
  • This work is concerned with construction of the intelligence stress predictor far compression strength evaluation using neural network-ultrasonic waves. The contact pressure in jointed plates was measured by using ultrasonic technique. Neural network is used to evaluate and predict contact pressure from the results of the calibration curves. The organized neural system was leaned with the accuracy of 99%, as a result of learning the ultrasonic echo ratio to the contact pressure measurement between SM45C and STS410 materials. And it could be evaluated and predicted with the accuracy of 90% in the evaluation of ultrasonic echo ratio difference in the same surface roughness and contact pressure, and 85% in the prediction of virtual ultrasonic echo ratio. Thus the proposed stress predictor is very useful for the evaluation and prediction of the contact pressure between SM45C and STS410 materials.

  • PDF

고압에서 DME-Air 혼합기의 화염속도 측정 (Measurement of Laminar Flame Speeds of Dimethyl Ether-Air Mixtures at High Pressure)

  • 이수각;이기용
    • 한국연소학회지
    • /
    • 제19권1호
    • /
    • pp.11-16
    • /
    • 2014
  • Spherically expanding flames are used to measure flame speeds, which are derived the corresponding laminar flame speeds at zero stretch. Dimethyl Ether-Air mixtures at high pressure are studied over an extensive range of equivalence ratios. The classical shadowgraph technique is used to detect the reaction zone. In analytical methodology the optimization process using least mean squares is performed to extract the laminar flame speeds. It is seen that the laminar flame speed of DME-Air mixture with the increase of pressure decreases rapidly showing a similar trend to other hydrocarbon fuels. At pressure of 2 and 10 atm the experimental data from the present study agree well with results reported in the literature. Especially the laminar flame speeds at 2 atm are in good agreement with those calculated in numerical work over the full stoichiometric range. At elevated pressure of 12 atm the measured data are slightly slower at fuel lean condition and show close agreement at fuel rich condition when compared with the numerical results.

사출성형에서 캐비티압력과 인장강도에 관한 연구 (A Study on Cavity Pressure and Tensile Strength of Injection Molding)

  • 유중학;김희송
    • 한국자동차공학회논문집
    • /
    • 제2권6호
    • /
    • pp.110-116
    • /
    • 1994
  • In this research, the tensile strength of molded parts and pressure distribution were analyzed to study the cavity filling stage and packing stage in injection molding. The measurement of cavity pressure was obtained by a data acquisition system with the installation of transducers in the cavity. Molded parts were tested by a universal testing machine to obtain the tensile strength. For the experimental work, the tensile strength of molded parts increased with longer packing time and exact freezing time of the gate was obtained by a cavity pressure curve. In addition, the effect of packing did not occur and tensile strength was almost constant after early 1.5 sec of the freezing time of gate. Density tended to be higher about 0.2% due to a larger degree of mold temperature and melt temperature. Also, changing pressure in the cavity was effectively sensed. Thereafter, the possibility of the development of pattern recognition expert system was confirmed on the basis of the experimental results.

  • PDF

차축의 중량 분포와 타이어의 공기압이 트랙터 작업의 연료 효율에 미치는 영향 (Effects of Distribution of Axle Load and Inflation Pressure of Tires on Fuel Efficiency of Tractor Operations)

  • 이진웅;김경욱;김동현;최규정
    • Journal of Biosystems Engineering
    • /
    • 제36권5호
    • /
    • pp.303-313
    • /
    • 2011
  • This study was conducted to investigate the effects of axle weight distribution and inflation pressure of tire on the fuel economy of tractors as well as operational range of tractor engine in terms of engine speed and power when a 4WD tractor of 38.2 kW rated power at 2500 rpm is used for plowing and flooded-field rotavating in paddy fields. (1) Plowing operation required an average engine power of 9.6~13.5 kW which equals 25~35% of rated PTO power. Engine speed ranged from 1,320.4 to 1,737.4 rpm, work velocity from 3.4 to 4.8 km/h, and fuel consumption from 3.2 to 4.2 L/h, respectively. (2) Flooded-field rotavating required an average engine power of 11.5~18.5 kW which equals 30~48.4% of rated PTO power. Out of this 6.2~12.2 kW was used for PTO power. Engine speed ranged from 1,557 to 2,067 rpm, work velocity from 2.5~5.4 km/h and fuel consumption from 3.2~5.5 L/h, respectively. (3) Axle weight distribution, inflation pressure of tire and moisture content of soil did not affect significantly the specific volumetric fuel consumption but affected significantly the fuel consumption per unit area of operation. Fuel savings amounted to 65% in plowing operation and 20% in flooded-field rotavating when the axle weight distribution and inflation pressure of tire were optimally adjusted. (4) Optimal adjustment of axle weight distribution and inflation pressure of tire are expected to save fuel consumption by 10~65% per unit area of operation in plowing and 10~20% in flooded-field rotavating.