• Title/Summary/Keyword: work load

Search Result 1,975, Processing Time 0.026 seconds

Teaching and Learning of University Calculus with Python-based Coding Education (파이썬(Python) 기반의 코딩교육을 적용한 대학 미적분학의 교수·학습)

  • Park, Kyung-Eun;Lee, Sang-Gu;Ham, Yoonmee;Lee, Jae Hwa
    • Communications of Mathematical Education
    • /
    • v.33 no.3
    • /
    • pp.163-180
    • /
    • 2019
  • This study introduces a development of calculus contents which makes to understand the main concepts of calculus in a short period of time and to enhance problem solving and computational thinking for complex problems encountered in the real world for college freshmen with diverse backgrounds. As a concrete measure, we developed 'Teaching and Learning' contents and Python-based code for Calculus I and II which was used in actual classroom. In other words, the entire process of teaching and learning, action plan, and evaluation method for calculus class with Python based coding are reported and shared. In anytime and anywhere, our students were able to freely practice and effectively exercise calculus problems. By using the given code, students could gain meaningful understanding of calculus contents and were able to expand their computational thinking skills. In addition, we share a way that it motivated student activities, and evaluated students fairly based on data which they generated, but still instructor's work load is less than before. Therefore, it can be a teaching and learning model for college mathematics which shows a possibility to cover calculus concepts and computational thinking at once in a innovative way for the 21st century.

Estimation of installation spacing by analyzing the lateral behavior of the safety fence fixed to rail bottom (레일저부고정형 안전펜스의 횡 방향 거동 분석을 통한 설치간격 산정)

  • Park, Seonghyeon;Sung, Deokyong;Lee, Changho;Jung, Hyuksang;Youg, Seungkyong
    • Journal of The Korean Society For Urban Railway
    • /
    • v.6 no.4
    • /
    • pp.249-257
    • /
    • 2018
  • The number of deaths for railway traffic accidents is mainly caused by working close to the track, or when unauthorized passage pass through the track. The safety fences are being used to ensure safety for workers close to the track, and to improve the efficiency of the work, without interfering with the passage of trains. However, a safety fence for railway tracks needs to be examined to see if it will interfere with the passage of trains. The purpose of this study is to analyze the safe distance between train and safety fence developed in Korea. In addition, the lateral load condition of wind pressure by trains is estimated and numerical analysis is carried out according to the installation intervals of railway safety fences. It has been confirmed that the proper spacing between the train and the railway safety fence should be at least 200 mm from the vehicle limit, and that the proper spacing of railway safety fence must be calculated in consideration of the wind pressure by trains.

Evaluation of Domestic and Foreign Design Standards for Soil Nailing Method by Analysis of Slope Restoration Case (비탈면 복구사례 분석을 통한 쏘일네일링 공법의 국내외 설계기준 평가)

  • You, Kwang-Ho;Kim, Tae-Won
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.11
    • /
    • pp.11-22
    • /
    • 2019
  • Limit state design (LSD) and allowable stress design (ASD) are two main types of soil nailing design methodologies. In the LSD method, stability is determined by applying individual coefficients to ground strength, working load and etc. The ASD method calculates the safety factor and compares it with the minimum safety factor to determine the stability. The global design trend of soil nailing system is changing from the ASD method to the LSD method. The design method in Korea still adopts the ASD philosophy while others mostly do the limit state design. In this study, four soil nail design methods, 'FHWA GEC 7' in U.S. (2015), 'Clouterre' in France (1991), 'Soil nailing - best practice guidance' in U.K. (2005), 'Geoguide 7' in Hongkong (2008), and 'Design guide for slope in construction work' in Korea (2016) were applied to the evaluation of the stability and the results were analyzed comparatively in brief. It is revealed that the design method of 'the overall stability of soil nail walls' in Korea is the most conservative and next those by FHWA, Clouterre and CIRIA become more conservative in order. However, the difference of results obtained from FHWA and Clouterre is negligible. Also, this study found out that efforts to improve domestic design criterion are needed.

An Analysis of the Effect of PBD Discharge Capacity to Leave Period (방치기간에 따른 PBD의 통수능 효과 분석)

  • Lee, Keeyong;Park, Minchul;Jeong, Sangguk;Lee, Song
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.10
    • /
    • pp.39-49
    • /
    • 2011
  • Recently PBD method, one of acceleration of consolidation methods is used in the soft ground to shorten consolidation time for fast settlement during construction. It is economical and easy to work. Discharge capacity of PBD is sensitive in proportion to thickness of soft ground layer, and drainage of PBD declines due to disturbance effect in surrounding ground by mandrel used for vertical drainage setting and setting machines and type. Also, deviation of discharge capacity is large according to ground condition, construction condition and soil properties. In addition, when embankment loading is not conducted instantly after PBD setting due to rain or lack of embankment material supply, it causes leaving period problems. But cause and analysis of those problems for discharge capacity is lack. So, in this test, ground improvement and discharge capacity is investigated by implementing composite discharge capacity test for analysis of an effect factor of PBD discharge capacity with leaving period. After fixing the vertical drain on a cylindrical cylinder, put churned sample into the cylinder. Then leave 0day, 30day, 60day and 90day. And then, load following the loading step of 30, 70 and 120kPa using a pressure device. As a result, the longer leaving period, discharge capacity is reduced. It is caused by a decrease of discharge area caused by creep transformation moisture absorption of PBD filter after long leaving period.

Experimental Study on Deformation Resistance Capacity of SY Permanent Steel Form for RC Beam and Girder under Casting Concrete (SY 비탈형 보 거푸집의 콘크리트 타설시 변형저항성능에 관한 실험적 연구)

  • Bae, Kyu-Woong;Shin, Sang-Min
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.6
    • /
    • pp.605-615
    • /
    • 2021
  • Recently, to shorten construction periods and reduce labor costs, the need for a corrugated beam form in the RC structure is being emphasized. The purpose of this study is to evaluate the deformation performance of SY Beam, a newly developed corrugated beam form work, during concrete casting. The standard cross-sectional shape of SY Beam was determined by modeling the deck structure of various thicknesses using the MIDAS GEN program. As a result, the cross-sectional dimensions of the SY Beam were determined to be 400mm and 450mm in width and height, respectively. A total of three SY Beam specimens were fabricated using steel plate thicknesses of 0.8, 1.0, and 1.2mm. The load conditions applied during casting concrete at the actual site are reflected. The vertical and horizontal displacements of the SY beam were measured during concrete casting. As a result, the vertical displacement showed a tendency to decrease as the thickness increased. Considering both vertical and horizontal displacement, the case with steel plate thickness of 1.2mm is the safest and most immediately applicable to the field. In the future, to secure manufacturability, constructability, and economics, the optimum steel plate thickness should be derived, and additional analysis and experimental studies for 1.05, 1.1, and 1.15mm are required.

Development of Detailed Design Automation Technology for AI-based Exterior Wall Panels and its Backframes

  • Kim, HaYoung;Yi, June-Seong
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1249-1249
    • /
    • 2022
  • The facade, an exterior material of a building, is one of the crucial factors that determine its morphological identity and its functional levels, such as energy performance, earthquake and fire resistance. However, regardless of the type of exterior materials, huge property and human casualties are continuing due to frequent exterior materials dropout accidents. The quality of the building envelope depends on the detailed design and is closely related to the back frames that support the exterior material. Detailed design means the creation of a shop drawing, which is the stage of developing the basic design to a level where construction is possible by specifying the exact necessary details. However, due to chronic problems in the construction industry, such as reducing working hours and the lack of design personnel, detailed design is not being appropriately implemented. Considering these characteristics, it is necessary to develop the detailed design process of exterior materials and works based on the domain-expert knowledge of the construction industry using artificial intelligence (AI). Therefore, this study aims to establish a detailed design automation algorithm for AI-based condition-responsive exterior wall panels and their back frames. The scope of the study is limited to "detailed design" performed based on the working drawings during the exterior work process and "stone panels" among exterior materials. First, working-level data on stone works is collected to analyze the existing detailed design process. After that, design parameters are derived by analyzing factors that affect the design of the building's exterior wall and back frames, such as structure, floor height, wind load, lift limit, and transportation elements. The relational expression between the derived parameters is derived, and it is algorithmized to implement a rule-based AI design. These algorithms can be applied to detailed designs based on 3D BIM to automatically calculate quantity and unit price. The next goal is to derive the iterative elements that occur in the process and implement a robotic process automation (RPA)-based system to link the entire "Detailed design-Quality calculation-Order process." This study is significant because it expands the design automation research, which has been rather limited to basic and implemented design, to the detailed design area at the beginning of the construction execution and increases the productivity by using AI. In addition, it can help fundamentally improve the working environment of the construction industry through the development of direct and applicable technologies to practice.

  • PDF

Effect of Latent Heat Material Placement on Inside Temperature Uniformity of Insulated Transfer Boxes (단열용기의 잠열재 배치에 따른 내부 온도 균일성에 대한 영향)

  • HyungYong Ji;Dong-Yeol Chung;Seuk Cheun Choi;Joeng-Yeol Kim
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.29 no.1
    • /
    • pp.27-33
    • /
    • 2023
  • An optimized design of the transportation insulated box must be considered to control the thermal damage in order to maintain the fresh condition for temperature-sensitive medicine and frozen food safety. The inside temperature of the insulated box is a natural convection enclosure state, thermal stratification naturally occurs as time passes in case of with outside heat load. The latent heat material (LHM) placement inside the box maintains the target temperature of the product for temperature fluctuations during transport, and LHM application is a common and efficient method. In this work, inside temperature stratification in an insulated box depending on the LHM pack position is numerically simulated and experimented. The insulated box is made up of vacuum insulation panel (VIP), and LHM modules are placed over six faces inside the box, with the same weight. The temperature curves for 72 hrs as experiment results clearly show the temperature stratification in the upper, middle, and lower at the LHM melting time region. However, the temperature stratification state is uniformly changed in accordance with the condition of the upper and lower placement weight of the LHM pack. And also, the temperature uniformity by changed placement weight of LHM has an effect on maintaining time for target air temperature inside the box. These results provide information on the optimized design of the insulated box with LHM.

Experimental study on the vertical bearing behavior of nodular diaphragm wall in sandy soil based on PIV technique

  • Jiujiang Wu;Longjun Pu;Hui Shang;Yi Zhang;Lijuan Wang;Haodong Hu
    • Geomechanics and Engineering
    • /
    • v.35 no.2
    • /
    • pp.195-208
    • /
    • 2023
  • The nodular diaphragm wall (NDW) is a novel type of foundation with favorable engineering characteristics, which has already been utilized in high-rise buildings and high-speed railways. Compared to traditional diaphragm walls, the NDW offers significantly improved vertical bearing capacity due to the presence of nodular parts while reducing construction time and excavation work. Despite its potential, research on the vertical bearing characteristics of NDW requires further study, and the investigation and visualization of its displacement pattern and failure mode are scant. Meanwhile, the measurement of the force component acting on the nodular parts remains challenging. In this paper, the vertical bearing characteristics of NDW are studied in detail through the indoor model test, and the displacement and failure mode of the foundation is analyzed using particle image velocimetry (PIV) technology. The principles and methods for monitoring the force acting on the nodular parts are described in detail. The research results show that the nodular part plays an essential role in the bearing capacity of the NDW, and its maximum load-bearing ratio can reach 30.92%. The existence of the bottom nodular part contributes more to the bearing capacity of the foundation compared to the middle nodular part, and the use of both middle and bottom nodular parts increases the bearing capacity of the foundation by about 9~12% compared to a single nodular part of the NDW. The increase in the number of nodular parts cannot produce a simple superposition effect on the resistance born by the nodular parts since the nodular parts have an insignificant influence on the exertion and distribution of the skin friction of NDW. The existence of the nodular part changes the displacement field of the soil around NDW and increases the displacement influence range of the foundation to a certain extent. For NDWs with three different nodal arrangements, the failure modes of the foundations appear to be local shear failures. Overall, this study provides valuable insights into the performance and behavior of NDWs, which will aid in their effective utilization and further research in the field.

A study on the effect of the pile tip deformations on the pile behaviour to shield TBM tunnelling (Shield TBM 터널시공으로 유발된 말뚝선단의 변형이 말뚝거동에 미치는 영향에 대한 연구)

  • Young-Jin Jeon;Byung-Soo Park;Young-Nam Choi;Cheol-Ju Lee
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.3
    • /
    • pp.169-189
    • /
    • 2024
  • In the current work, a series of three-dimensional finite element analyses have been carried out to understand the behaviour of pre-existing single piles and pile groups to adjacent Shield TBM tunnelling by considering various reinforcement conditions. The numerical modelling has analysed the effect of the pile cutting, ground reinforcement and pile cap reinforcement. The analyses concentrate on the ground settlements, the pile head settlements, the axial pile forces and the shear stress transfer mechanism at the pile-soil interface. In all cases of the pile tips supported by weathered rock, the distributions of shear stresses presented a similar trend. Also, when the pile tips were cut, tensile forces or compressive forces were induced on the piles depending on the relative positions of the piles. Furthermore, when the pile tips are supported by weathered rock, approximately 70% of the load is supported by surface friction, and only the remaining 30% is supported by the pile tip. Furthermore the final settlement of the piles without reinforcement showed approximately 70% more settlement than the piles for which ground reinforcement is considered. It has been found that the ground settlements and the pile settlements are heavily affected by the pile cutting and reinforcement conditions. The behaviour of the single pile and group piles, depending on the pile cutting, conditions of ground and pile cap reinforcement, has been extensively examined and analysed by considering the key features in great details.

A Study on the Strength Optimized Design of Cushion Bracket on Power Sinking Seat Frame (파워 싱킹 시트 프레임 쿠션 브라켓 구조의 강도 최적화 설계 연구)

  • Jin Hee Heo;Yun Sik Yang;Yeong Jo Ju;Euy Sik Jeon
    • Industry Promotion Research
    • /
    • v.9 no.4
    • /
    • pp.93-103
    • /
    • 2024
  • With recent advancements in autonomous driving technology, vehicles are evolving beyond being simple means of transportation to become spaces for rest and work. As a result, the development of seat frames that maximize the use of interior space has been actively pursued. In particular, the electrification of containment sinking seats has emerged as a significant challenge, especially regarding the structural strength design of seat frame components as they transition from manual to automated systems. This study aims to convert the manual folding mechanism of the sinking seat frame into an automated mechanism using electric motors and to design the required component specifications and strength during the process. The main components for electrification were simplified, and, in particular, the design variables related to the placement angle and length of the electric motor applied to the cushion bracket were set at three levels, with subsequent 3D modeling conducted. The study results are as follows: Firstly, multi-body dynamic analysis showed that, compared to the standard configuration, an optimal motor arrangement angle can reduce motor force and torque by 30.25% and 6.7%, respectively. Secondly, strength analysis, considering the maximum allowable motor load and rear moment for each cushion bracket configuration, indicated that deformation and stress could be reduced by 13.76% and 34.95%, respectively, through the optimal angle and length. Finally, the optimal configuration of the cushion bracket, which aligns with the multi-body dynamic analysis results, was determined. This process is expected to provide a useful reference for future design strategies for automated seat frames.