• Title/Summary/Keyword: work interference

Search Result 328, Processing Time 0.032 seconds

Ghost Imaging With Classically Correlated Beams (고전 상관관계를 갖는 두 빛을 이용한 고스트 이미징)

  • Bae, Sam-Yong;Youn, Sun-Hyun
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.6
    • /
    • pp.481-484
    • /
    • 2005
  • Quantum ghost imaging uses quantum mechanically entangled photons to form an image of an object. The quantum ghost image is also obtained by means of classical coincidence measurements with a classically correlated light source[1,2]. In this work we performed classical coincidence imaging experiments with classically correlated beams in their direction of propagation. We observed the ghost interference patterns which were usually made by quantum mechanically entangled states and we also analyze in detail the mechanism of the ghost imaging with classically correlated lights. We made? the classically correlated source with an Ar laser and controlled the direction of the light by a mirror? mounted on a small speaker.

Analysis of Optical Properties with Photopolymers for Holographic Application

  • Kim Nam;Hwang Eun-Seop;Shin Chang-Won
    • Journal of the Optical Society of Korea
    • /
    • v.10 no.1
    • /
    • pp.1-10
    • /
    • 2006
  • Optical transparency and high diffraction efficiency are two essential factors for high performance of the photopolymer. Optical transparency mainly depends on the miscibility between polymer binder and photopolymerized polymer, while diffraction efficiency depends on the refractive index modulation between polymer binder and photopolymerized polymer. For most of organic materials, the large refractive index difference between two polymers accompanies large structural difference that leads to the poor miscibility and thus poor optical quality via light scattering. Therefore, it is difficult to design a high-performance photopolymer satisfying both requirements. In this work, first, we prepared a new phase-stable photopolymer (PMMA) with large refractive index modulation and investigated the optical properties. Our photopolymer is based on modified poly (methyl methacrylate) as a polymer binder, acryl amide as a photopolymerizable monomer, triethanolamine as initiator, and yellow eosin as a photosensitizer at 532 nm. Diffraction efficiency over 85% and optical transmittance over 90% were obtained for the photopolymer. Second, Organic-inorganic nanocomposite films were prepared by dispersing an aromatic methacrylic monomer and a photo- initiator in organic-inorganic hybrid sol-gel matrices. The film properties could be controlled by optimizing the content of an organically modified silica precursor (TSPEG) in the sol-gel matrices. The photopolymer film modified with the organic chain (TSPEG) showed high diffraction efficiency (> 90%) under an optimized condition. High diffraction efficiency could be ascribed to the fast diffusion and efficient polymerization of monomers under interference light to generate refractive index modulation. The TSPEG modified photopolymer film could be successfully used for holographic memory.

Design of DC Battery Size & Controller for Household Single-Phase ESS-PCS Considering Voltage Drop and DC Link Voltage Ripple (주택용 단상 ESS-PCS의 전압손실과 직류링크 맥동을 고려한 직류측 배터리 사이즈 및 제어기 설계)

  • Kim, Yong-Jung;Lee, Jinsung;Kim, Hyosung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.2
    • /
    • pp.94-100
    • /
    • 2018
  • Generally, in a single-phase energy storage system (ESS) for households, AC ripple component with twice the fundamental frequency exists inevitably in the DC link voltage of single-phase PCS. In the grid-connected mode of a single-phase inverter, the AC ripple component in the DC link voltage causes low-order harmonics on grid-side current that deteriorates power quality on an AC grid. In this work, a control system adopting a feedforward controller is established to eliminate the AC ripple interference on the DC link side. Optimal battery nominal voltage design method is also proposed by considering the voltage loss and AC ripple voltage on DC link side in a single-phase ESS. Finally, the control system and battery nominal voltage design method are verified through simulations and experiments.

A Study of efficient Wireless TCP Transmission Using Consecutive Packet Loss and Zero Window Control (연속적인 패킷 손실 제어와 제로 윈도우 제어를 이용한 무선 TCP 전송 성능 향상 연구)

  • Kim, Sung-Chan;Jun, Moon-Seog
    • The KIPS Transactions:PartA
    • /
    • v.13A no.7 s.104
    • /
    • pp.573-580
    • /
    • 2006
  • The conventional transport layer protocol TCP is designed to work under condition of packet loss is due to the network congestion, so that it's suitable in the traditional wired network with fixed hosts but it's inefficient on the wireless network where the environment of fading, noise, and transmission error comes from interference. This result from the needless transmission control of the bit error is due to treats the packet loss as a packet congestion control in the wireless network. In this paper, we propose the advanced SNOOP protocol with the consecutive packet loss and TCP window control to avoid the needless congestion management algorithm in wireless network for the wireless TCP packet transmission enhancement. We verify the performance of the advanced module from the simulation experiment result.

Electroless Silver Plating of PC/ABS and PC by Plasma Treatment and MmSH Injection Process (Plasma 처리 및 MmSH 사출방법으로 인한 PC/ABS와 PC상의 은도금 밀착성에 관한 연구)

  • Park, Ki-Y.;Lee, Hye-W.;Lee, Jong-K.
    • Journal of Surface Science and Engineering
    • /
    • v.41 no.1
    • /
    • pp.33-37
    • /
    • 2008
  • Polycarbonate has a high transmittance to light, low specific gravity, flexibility and cost-effectiveness that extends the application field of the polymer to bio-engineering, optics, electronic parts, etc. Moreover, electro plating of metallic film on PC could endow the parts the electromagnetic interference shielding capability. However, poor adhesion of copper on PC limited the wide usage in the industry. In this work, a composite(PC/ABS) and MmSH(Momentary mold Surface Heating) injection process were used to improve the plating characteristics; plating thickness, gloss and adhesion. Also plasma treatment and chemical treatment were employed for improving adhesion. Plating characteristics on PC/ABS were better than those on PC due to the anchoring effect of butadiene. MmSH injection process could ameliorate the gloss and coating adhesion. Also plating thickness and adhesion of PC and PC/ABS were increased by plasma treatment.

Binary Power Control for Sum Rate Maximization of Full Duplex Transmission in Multicell Networks

  • Vo, Ta-Hoang;Hwang, Won-Joo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.583-585
    • /
    • 2016
  • The recent advances in wireless networks area have led to new techniques, such as small cells or full-duplex (FD) transmission, have also been developed to further increase the network capacity. Particularly, full-duplex communication promises expected throughput gain by doubling the spectrum compared to half-duplex (HD) communication. Because this technique permits one set of frequencies to simultaneously transmit and receive signals. In this paper, we focus on the binary power control for the users and the base stations in full-duplex multiple cellulars wireless networks to obtain optimal sum-rate under the effect interference and noise. We investigate with a scenario in there one carrier is assigned to only one user in each cell and construct a model for this problem. In this work, we apply the binary power control by the its simplification in the implemented algorithm for both uplink and downlink simultaneously to maximize sum data rate of the system. At first, we realize the 2-cells case separately to check the optimal power allocation whether being binary. Then, we carry on with N-cells case in general through properties of binary power control.

  • PDF

Performance Evaluation of Pico Cell Range Expansion and Frequency Partitioning in Heterogeneous Network (Heterogeneous 네트워크에서 Pico 셀 범위 확장과 주파수 분할의 성능 평가)

  • Qu, Hong Liang;Kim, Seung-Yeon;Ryu, Seung-Wan;Cho, Choong-Ho;Lee, Hyong-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.8B
    • /
    • pp.677-686
    • /
    • 2012
  • In the presence of a high power cellular network, picocells are added to a Macro-cell layout aiming to enhance total system throughput from cell-splitting. While because of the different transmission power between macrocell and picocell, and co-channel interference challenges between the existing macrocell and the new low power node-picocell, these problems result in no substantive improvement to total system effective throughput. Some works have investigated on these problems. Pico Cell Range Expansion (CRE) technique tries to employ some methods (such as adding a bias for Pico cell RSRP) to drive to offload some UEs to camp on picocells. In this work, we propose two solution schemes (including cell selection method, channel allocation and serving process) and combine new adaptive frequency partitioning reuse scheme to improve the total system throughput. In the simulation, we evaluate the performances of heterogeneous networks for downlink transmission in terms of channel utilization per cell (pico and macro), call blocking probability, outage probability and effective throughput. The simulation results show that the call blocking probability and outage probability are reduced remarkably and the throughput is increased effectively.

Application of Digital Human Modeling for Design of Yacht

  • Kim, Dong-Joon;Ko, Chan Gil;Lee, Yujeong;Chang, Seong Rok
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.5
    • /
    • pp.475-480
    • /
    • 2013
  • Objective: In this study, virtual reality was adopted to consider ergonomic factors in yacht design. Virtual human which is the same actual human was created in virtual environment using Digital Human Modeling which has been used in the manufacturing communities to design better workplaces and maximize the safety of workers. Background: During the past 40 years yachting has expanded from being, generally speaking, a minority sport - too expensive for the large majority of people - into a major recreational activity practiced by millions all over the world. Many new yacht designs have appeared and number of professional, as well as amateur designers has increased steadily. But they had not considered ergonomic factors in yacht design. Method: Worker's posture, traffic line and workload had been analyzed in sailing yacht. After the caution level was evaluated, we pointed out clues which had high workload and interference. To reduce workload, we applied ergonomic principles for improving working conditions and environments in Digital Human Model. Results: We found the space problems and workload of postures. Conclusion: (1) Unnatural posture of crews was sustained. (2) Workload that occurs in the human body was overloaded. (3) Crew's work space was very narrow. Application: This study will be applied the new ergonomic design of yacht.

Current-induced Phase Demodulation Using a PWM Sampling for a Fiber-optic CT

  • Park, Hyoung-Jun;Lee, June-Ho;Kim, Hyun-Jin;Song, Min-Ho
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.240-244
    • /
    • 2010
  • In this work, we used PWM sampling for demodulation of a fiber-optic interferometric current transformer. The interference signal from a fiber-optic CT is sampled with PWM triggers that produce a 90-degree phase difference between two consecutively sampled signals. The current-induced phase is extracted by applying an arctangent demodulation and a phase unwrapping algorithm to the sampled signals. From experiments using the proposed demodulation, we obtained phase measurement accuracy and a linearity error, in AC current measurements, of ~2.35 mrad and 0.18%, respectively. The accuracy of the proposed method was compared with that of a lock-in amplifier demodulation, which showed only 0.36% difference. To compare the birefringence effects of different fiber-optic sensor coils, a flint glass fiber and a standard single-mode fiber were used under the same conditions. The flint glass fiber coil with a Faraday rotator mirror showed the best performance. Because of the simple hardware structure and signal processing, the proposed demodulation would be suitable for low-cost over-current monitoring in high voltage power systems.

Compressed Channel Feedback for Correlated Massive MIMO Systems

  • Sim, Min Soo;Park, Jeonghun;Chae, Chan-Byoung;Heath, Robert W. Jr.
    • Journal of Communications and Networks
    • /
    • v.18 no.1
    • /
    • pp.95-104
    • /
    • 2016
  • Massive multiple-input multiple-output (MIMO) is a promising approach for cellular communication due to its energy efficiency and high achievable data rate. These advantages, however, can be realized only when channel state information (CSI) is available at the transmitter. Since there are many antennas, CSI is too large to feed back without compression. To compress CSI, prior work has applied compressive sensing (CS) techniques and the fact that CSI can be sparsified. The adopted sparsifying bases fail, however, to reflect the spatial correlation and channel conditions or to be feasible in practice. In this paper, we propose a new sparsifying basis that reflects the long-term characteristics of the channel, and needs no change as long as the spatial correlation model does not change. We propose a new reconstruction algorithm for CS, and also suggest dimensionality reduction as a compression method. To feed back compressed CSI in practice, we propose a new codebook for the compressed channel quantization assuming no other-cell interference. Numerical results confirm that the proposed channel feedback mechanisms show better performance in point-to-point (single-user) and point-to-multi-point (multi-user) scenarios.