• Title/Summary/Keyword: work flow

Search Result 2,760, Processing Time 0.03 seconds

Material model optimization for dynamic recrystallization of Mg alloy under elevated forming temperature (마그네슘 합금의 온간 동적재결정 구성방정식 최적화)

  • Cho, Yooney;Yoon, Jonghun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.263-268
    • /
    • 2017
  • A hot forming process is required for Mg alloys to enhance the formability and plastic workability due to the insufficient formability at room temperature. Mg alloy undergoes dynamic recrystallization (DRX) during the hot working process, which is a restoration or softening mechanism that reduces the dislocation density and releases the accumulated energy to facilitate plastic deformation. The flow stress curve shows three stages of complicated strain hardening and softening phenomena. As the strain increases, the stress also increases due to work hardening, and it abruptly decreases work softening by dynamic recrystallization. It then maintains a steady-state region due to the equilibrium between the work hardening and softening. In this paper, an efficient optimization process is proposed for the material model of the dynamic recrystallization to improve the accuracy of the flow curve. A total of 18 variables of the constitutive equation of AZ80 alloy were systematically optimized at an elevated forming temperature($300^{\circ}C$) with various strain rates(0.001, 0.1, 1, 10/sec). The proposed method was validated by applying it to the constitutive equation of AZ61 alloy.

A Study on the Numerical Analysis Methodology for Thermal and Flow Characteristics of High Pressure Turbine in Aircraft Gas Turbine Engine (항공기용 가스터빈 엔진의 고압터빈에서 열유동 특성해석을 위한 전산해석기법 연구)

  • Kim, Jinuk;Bak, Jeonggyu;Kang, Youngseok;Cho, Leesang;Cho, Jinsoo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.3
    • /
    • pp.46-51
    • /
    • 2014
  • In this study, a numerical analysis methodology is studied to predict thermal and flow characteristics of C3X vane with internal cooling. Effects of turbulence models, transition models and viscous work term on temperature and pressure distributions on the vane surface are investigated. These optional terms have few effects on the pressure distributions over the vane surface. However, they have great influence on prediction of the temperature distributions on the vane surface. The combination of k-${\omega}$ based SST turbulence model, ${\gamma}$ transition model and viscous work term are better than RSM turbulence model on prediction of the surface temperature. The average temperature difference between CFD results and experimental results is calculated 2 % at the pressure side and 1 % at the suction side. Furthermore computing time of this combination is half of the RSM turbulence model. When k-${\omega}$ based SST turbulence model and ${\gamma}$ transition model with viscous work term are applied, more accurate predictions of thermal and internal flow characteristics of high pressure turbine are expected.

Analysis of Korean 3D Cinema Work-flow -Focusing on < Sector 7 >- (한국 3D 영화 제작과정 분석-<7광구>의 제작 사례를 중심으로-)

  • Kim, Ik-Sang;Seo, Won-Tae
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.1
    • /
    • pp.166-175
    • /
    • 2012
  • (2010) and have showed possibility of Korean 3D cinema production. From the experience, many problems were deduced in terms of 3D cinema techniques and work-flow. this study is analysis of 's production. The analysis is focused on the problems from the 3D cinema production and pipeline of . By making an analysis the experience, trial and error of production, it will be giving practical information and analysis result to staffs who are willing to create an next Korean 3D cinema. As a result of analysis, has failed to achieve technical accomplishment and to build effective production pipeline. Never the less, it is positively evaluated that it has tried to establish the foundation of Korean 3D cinema production.

A Study on the Damages of Head Works by the Storm Flood in the Area of Cheong Ju and Boeun -Emphasis on the Occurring Rate and Mechanism of Damage at Each Region of Head Works- (청주 및 보은지방의 두수공홍수재해에 관한 조사연구(I) -부위별 재해발생율 및 재해발생기구를 중심으로-)

  • 김기철;남성우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.24 no.1
    • /
    • pp.23-30
    • /
    • 1982
  • The aim of this report is to analyze the Occurring rate of damage at each region of head works and to clear its damaged mechanism, centering around the destroyed situations of head works along both Musim and Bochong Rivers suffered from the storm flood occurred on July 22, 1980. The results obtained from the investigation of 25 head works taken for samples are summarized as follows. 1. The occurring rate of damage at each region of head works showed the largest number of 100 percentage in the revetment and protected riverbed work respectively, in the order of the next largest number, 68 percentage in weir body, 56 percentage in apron and 36 percentage in bank. 2. The destructive damage of revetment influenced largely on sweeping bank away, and destructive sufferings of weir body and protected bed work affected on the destructi on of apron, otherwise the destructive sufferings of apron reversely also acted on the- destruction of weirbody and protected bed work. In other hand, partial damage of weir body at the side of revetment is largely influenced by destructive sweeping away of bank. 3. It was showed that the destructive phenomena of weir body occurred largely at the part of concentrated flow and also had a deep relation with scoring by concentrated flow around upstream foundation of weir. 4. The suffered region of revetment is the down stream part just near weir body and the degree of damage is more severe at the curved part of bank that center of flow is concentrated.

  • PDF

The Study on the Work Flow of Printing Industry with the Digitization (Digital화에 따른 인쇄산업의 Work flow에 관한 연구)

  • Kim, Se-Jin;Ha, Young-Baeck;Oh, Sung-Sang;Lee, Euy-Soo
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.25 no.2
    • /
    • pp.29-44
    • /
    • 2007
  • The printing industry is getting more digitalized and integration. It has enabled the interactive information and networking from Pre-Press, Press, to the Post-Press. These are efficient management and the improved process and productivity are getting more important. Such trends improved in the functionality and automation. This paper tries to find out how technology for CIP3/4 -based process may be applied and resolved. Such subject includes the domestic and international cases regarding each manufacturer's CIP3/4 technology types. Another purpose is to emphasize on the needs to establish the environment. Under this environment, it is possible to integrate network in exchangeable form through JDF standard format after CIP3/4. Based on the data from this study, it is expected to collect further substantial data which is related to the domestic printing company's CIP 4 operation. It will be also possible to perform subsequent studies on the proper variables of the market segment. CIP4 stands for "International Cooperation for Integration of Prepress, Press and Post-press, it is an association of around forty international companies, mostly manufacturers of prepress, press and post-press, as well as suppliers and users. In this paper, we studied on the acting application of CIP4 work flow.

  • PDF

Implementing Last Planner : Tunnel Construction Project (라스트 플래너 적용 사례연구 : 터널 프로젝트)

  • Kim, Yong-Woo;Jang, Jin-Woo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.7 no.4 s.32
    • /
    • pp.146-153
    • /
    • 2006
  • The Last Planner(LP), of which the goal is to improve work-flow reliability, has recently been introduced in Korea. It is found that some contractors have made efforts on applying the Last Planner to their projects. However, they face difficulties for a variety of reasons. This paper presents the case study results on Korean heavy civil projects, along with descriptions of the ways that the Last Planner was applied, and how the work flow reliability was improved. It also discusses the prerequisites and barriers to implementation of the Last Planner in applying heavy civil construction projects in Korea. The results can be used as a reference for companies to improve their work flow reliability for future projects.

RANS simulation of secondary flows in a low pressure turbine cascade: Influence of inlet boundary layer profile

  • Michele, Errante;Andrea, Ferrero;Francesco, Larocca
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.5
    • /
    • pp.415-431
    • /
    • 2022
  • Secondary flows have a huge impact on losses generation in modern low pressure gas turbines (LPTs). At design point, the interaction of the blade profile with the end-wall boundary layer is responsible for up to 40% of total losses. Therefore, predicting accurately the end-wall flow field in a LPT is extremely important in the industrial design phase. Since the inlet boundary layer profile is one of the factors which most affects the evolution of secondary flows, the first main objective of the present work is to investigate the impact of two different inlet conditions on the end-wall flow field of the T106A, a well known LPT cascade. The first condition, labeled in the paper as C1, is represented by uniform conditions at the inlet plane and the second, C2, by a flow characterized by a defined inlet boundary layer profile. The code used for the simulations is based on the Discontinuous Galerkin (DG) formulation and solves the Reynolds-averaged Navier-Stokes (RANS) equations coupled with the Spalart Allmaras turbulence model. Secondly, this work aims at estimating the influence of viscosity and turbulence on the T106A end-wall flow field. In order to do so, RANS results are compared with those obtained from an inviscid simulation with a prescribed inlet total pressure profile, which mimics a boundary layer. A comparison between C1 and C2 results highlights an influence of secondary flows on the flow field up to a significant distance from the end-wall. In particular, the C2 end-wall flow field appears to be characterized by greater over turning and under turning angles and higher total pressure losses. Furthermore, the C2 simulated flow field shows good agreement with experimental and numerical data available in literature. The C2 and inviscid Euler computed flow fields, although globally comparable, present evident differences. The cascade passage simulated with inviscid flow is mainly dominated by a single large and homogeneous vortex structure, less stretched in the spanwise direction and closer to the end-wall than vortical structures computed by compressible flow simulation. It is reasonable, then, asserting that for the chosen test case a great part of the secondary flows details is strongly dependent on viscous phenomena and turbulence.

PIV measurement and numerical investigation on flow characteristics of simulated fast reactor fuel subassembly

  • Zhang, Cheng;Ju, Haoran;Zhang, Dalin;Wu, Shuijin;Xu, Yijun;Wu, Yingwei;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.897-907
    • /
    • 2020
  • The flow characteristics of reactor fuel assembly always intrigue the designers and the experimentalists among the myriad phenomena that occur simultaneously in a nuclear core. In this work, the visual experimental method has been developed on the basis of refraction index matching (RIM) and particle image velocimetry (PIV) techniques to investigate the detailed flow characteristics in China fast reactor fuel subassembly. A 7-rod bundle of simulated fuel subassembly was fabricated for fine examination of flow characteristics in different subchannels. The experiments were performed at condition of Re=6500 (axial bulk velocity 1.6 m/s) and the fluid medium was maintained at 30℃ and 1.0 bar during operation. As for results, axial and lateral flow features were observed. It is shown that the spiral wire has an inhibitory effect on axial flow and significant intensity of lateral flow mixing effect is induced by the wire. The root mean square (RMS) of lateral velocity fluctuation was acquired after data processing, which indicates the strong turbulence characteristics in different flow subchannels.

Numerical Analysis of Heat and Mass Transfer in a Calandria Based Reactor

  • Tupake Ravindra S;Kulkarni PS;Rajan NKS
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.281-282
    • /
    • 2003
  • Numerical investigations are carried out to study the mass flux and temperature distribution in a calandria using a 3-D RANS code. The computations made for simulations of flow and convective heat transfer with near-to working conditions. The work provides an estimate of the safe working limits of the heat dissipation by virtue of prediction of the 'hot spots' in the calandria. The work assumes significance for preliminary designs of the reactors and for detailed critical parametric analysis that would be otherwise more expensive.

  • PDF

Study on the Thermal Characteristics of Organic Rankine Cycles for Use of Low-Temperature Heat Source (저온열원 활용을 위한 유기랭킨사이클의 열적 특성에 관한 연구)

  • Jin, Jae-Young;Kim, Kyoung-Hoon
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.191-194
    • /
    • 2011
  • Low-grade waste heat has generally been discarded in industry due to lack of efficient recovery methods. In recent years, organic Rankine cycle(ORC) has become a field of intense research and appears as a promising technology for conversion of heat into useful work of electricity. In this work thermodynamic performance of ORC with superheating of vapor is comparatively assessed for various working fluids. Special attention is paid to the effects of system parameters such as the evaporating temperature on the characteristics of the system such as maximum possible work extraction from the given source, volumetric flow rate per 1 kW of net work and quality of the working fluid at turbine exit as well as thermal efficiency.

  • PDF