• 제목/요약/키워드: word-unigram

검색결과 14건 처리시간 0.022초

어절 내의 형태소 범주 패턴에 기반한 통계적 자동 띄어쓰기 시스템 (A Stochastic Word-Spacing System Based on Word Category-Pattern)

  • 강미영;정성원;권혁철
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제33권11호
    • /
    • pp.965-978
    • /
    • 2006
  • 본 논문에서는 형태소 unigram과 한국어 어절을 형성하는 형태소 범주 패턴에 기반하여 어절을 인식하는 한국어 띄어쓰기 시스템을 구현하였다. 기존에 많이 연구된 통계 정보를 이용한 띄어쓰기 모델은 비교적 짧은 시간에 쉽게 구현할 수 있는 장점이 있지만, 한국어의 형태 유형론적 특성 때문에 발생하는 (ㄱ) 자료부족 문제와 (ㄴ) 메모리 크기 문제에 효과적으로 대처하지 못한다. 본 논문은 이 두 문제를 동시에 해결하기 위해 어절을 구성하고 있는 개별 형태소의 통계 정보와 그 형태소의 범주의 통계 정보를 기반으로 하여 띄어쓰기 후보 어절들을 추천한다. 임의의 후보 어절이 최종의 띄어쓰기 단위인 어절이 될 수 있는 확률은 (ㄱ) 해당 후보 어절 내의 각 형태소 확률과 (ㄴ) 해당 후보 어절을 구성하기 위해 그 형태소의 범주가 다른 형태소 범주와 함께 형성하는 패턴 내에서 차지하는 '범주가중치'를 고려하여 구한다. 해당 '범주가중치'는 (ㄱ) 말뭉치로부터 실제로 관찰된 어절의 확률과 (ㄴ) 후보 어절 내의 개별 형태소의 확률과 (ㄷ) 그 범주 가중치에 의해 추정된 어절 확률 사이의 평균 에러(error mean)가 최저가 되는 방향으로 학습하여 얻어진다.

한국어 단어 자동완성 시스템의 성능 분석 및 새로운 평가 방법 (Performance Analysis of a Korean Word Autocomplete System and New Evaluation Metrics)

  • 이성욱
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권6호
    • /
    • pp.656-661
    • /
    • 2015
  • 본 연구의 목적은 스마트폰이나 태블릿 PC와 같이 문자 입력이 수월하지 않은 모바일 기기에서 사용자로 하여금 최소한의 키입력을 통해 최대한 빠르고 정확히 원하는 단어를 얻을 수 있도록 도와주는 단어 자동완성 시스템의 성능을 평가하는 것이다. 우리는 트위터에서 대량의 데이터를 수집하였으며, 수집된 데이터의 사용빈도에 따라 유니그램(unigram) 사전과 바이그램(bigram) 사전을 각각 구축하였다. 구축된 사전을 사용한 단어 자동완성 시스템의 성능을 평가하였으며 기존의 평가방법보다 단어 자동완성 기능의 특성을 잘 반영한 키입력 수익률과 복원율을 새로운 평가 방법으로 제안하였다.

모바일 앱 트렌드를 고려한 2단계 군집화 방법 (Two-Phase Clustering Method Considering Mobile App Trends)

  • 허정만;박소영
    • 한국컴퓨터정보학회논문지
    • /
    • 제20권4호
    • /
    • pp.17-23
    • /
    • 2015
  • 본 논문에서는 단어 군집을 사용하여 모바일 앱을 군집화하는 방법을 제안한다. 모바일 앱 트렌드의 빠른 변화를 고려하여, 제안하는 방법은 미리 정의된 분류체계를 사용하지 않고, 모바일 앱 집합에 군집화 기술을 적용하여 의미적으로 유사한 모바일 앱을 묶는다. 짧은 모바일 앱 소개 글의 자료 부족 문제를 완화하기 위해서, 각 단어에 대해 unigram 뿐만 아니라, bigram, trigram, 단어 군집 정보를 추가적으로 확보하여 활용한다. 모바일 앱을 전체적으로 정확하게 군집화하기 위해서, 제안하는 방법은 단어 군집을 활용하여 모바일 앱 군집의 크기가 지나치게 작거나 크지 않도록 관리한다. 실험결과 제안하는 방법은 단어 군집을 활용하여 전체 정확도를 57.48%에서 79.66%로 22.18% 개선시켰다.

통계 정보를 이용한 한국어 자동 띄어쓰기 시스템의 성능 개선 (Improving Korean Word-Spacing System Using Stochastic Information)

  • 최성자;강미영;권혁철
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 봄 학술발표논문집 Vol.31 No.1 (B)
    • /
    • pp.883-885
    • /
    • 2004
  • 본 논문은 대용량 말뭉치로부터 어절 unigram과 음절 bigram 통계 정보를 추출하여 구축한 한국어 자동 띄어쓰기 시스템의 성능을 개선하는 방법을 제안한다 어절 통계를 주로 이용하는 기법으로 한국어 문서를 처리할 때, 한국어의 교착어적인 특성으로 인해 자료부족 문제가 발생한다 이물 극복하기 위해서 본 논문은 음절 bigram간 띄어쓸 확률 정보를 이용함으로써 어절로 인식 가능한 추가의 후보 어절을 추정하는 방법을 제안한다. 이와 글이 개선된 시스템의 성능을 다양한 실험 데이터를 사용하여 평가한 결과, 평균 93.76%의 어절 단위 정확도를 얻었다.

  • PDF

규칙과 어절 확률을 이용한 혼합 품사 태깅 모델 (POS-Tagging Model Combining Rules and Word Probability)

  • 황명진;강미영;권혁철
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 가을 학술발표논문집 Vol.33 No.2 (B)
    • /
    • pp.11-15
    • /
    • 2006
  • 본 논문은, 긍정적 가중치와 부정적 가중치를 통해 표현되는 규칙에 기반을 둔 품사 태깅 모델과, 형태 소 unigram 정보와 어절 내의 카테고리 패턴에 기반하여 어절 확률을 추정하는 품사 태깅 모델의 장점을 취하고 단점을 보완할 수 있는 혼합 품사 태깅 모델을 제안한다. 이 혼합 모델은 먼저, 규칙에 기반한 품사 태깅을 적용한 후, 규칙이 해결하지 못한 결과에 대해서 통계적인 기법을 사용하여 품사 태깅을 한다. 본 연구는 어절 내 카테고리 패턴정보에 따른 파라미터 set과 형태소 unigram만을 이용해 어절 확률을 계산해 내므로 다른 통계기반 접근방법에서와는 달리 작은 크기의 통계사전만을 필요로 하며, 카테고리 패턴 정보를 사용함으로써 통계기반 접근 방법의 가장 큰 문제점인 data sparseness 문제 또한 줄일 수 있다는 이점이 있다. 특히, 본 논문에서 사용할 통계 모델은 어절 확률에 기반을 두고 있기 때문에 한국어의 특성을 잘 반영할 수 있다. 본 논문에서 제안한 혼합 모델은 규칙이 적용된 후에도 후보열이 둘 이상 남아 오류로 반환되었던 어절 중 24%를 개선한다.

  • PDF

확장된 음절 bigram을 이용한 자동 띄어쓰기 시스템 (Word Segmentation System Using Extended Syllable bigram)

  • 임동희;전영진;김형준;강승식
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2005년도 제17회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.189-193
    • /
    • 2005
  • 본 논문은 통계 기반 방법인 음절 bigram을 이용한 자동 띄어쓰기를 기본 방법으로 하고 경우의 수를 세분화한 확장된 음절 bigram을 이용한 공백 확률, 띄어쓰기 통계를 바탕으로 최종 띄어쓰기 임계치 차등 적용, 에러 사전 적용 3가지 방법을 추가로 사용하는 경우 기본적인 방법만을 쓴 경우보다 띄어쓰기 정확도가 향상된다는 것을 확인하였다. 그리고 해당 음절에 대한 bigram이 없는 경우 확장된 음절 unigram을 통해 근사적으로 계산해 데이터부족 문제를 개선하였다. 한국어 말뭉치와 중국어 말뭉치에 대한 실험을 통해 본 논문에서 제안하는 방법이 한국어 자동 띄어쓰기뿐만 아니라 중국어 단어 분리에 적용할 수 있다는 것도 확인하였다.

  • PDF

A Survey of Machine Translation and Parts of Speech Tagging for Indian Languages

  • Khedkar, Vijayshri;Shah, Pritesh
    • International Journal of Computer Science & Network Security
    • /
    • 제22권4호
    • /
    • pp.245-253
    • /
    • 2022
  • Commenced in 1954 by IBM, machine translation has expanded immensely, particularly in this period. Machine translation can be broken into seven main steps namely- token generation, analyzing morphology, lexeme, tagging Part of Speech, chunking, parsing, and disambiguation in words. Morphological analysis plays a major role when translating Indian languages to develop accurate parts of speech taggers and word sense. The paper presents various machine translation methods used by different researchers for Indian languages along with their performance and drawbacks. Further, the paper concentrates on parts of speech (POS) tagging in Marathi dialect using various methods such as rule-based tagging, unigram, bigram, and more. After careful study, it is concluded that for machine translation, parts of speech tagging is a major step. Also, for the Marathi language, the Hidden Markov Model gives the best results for parts of speech tagging with an accuracy of 93% which can be further improved according to the dataset.

한국어 대용량 코퍼스의 오류 어휘 탐지 방안 (Error Word Detection in Korean Corpus)

  • 최민주;박지훈;손성환;강승식
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.500-502
    • /
    • 2019
  • 대용량의 언어 코퍼스를 이용할 때, 오류 어휘가 코퍼스에 포함되어 있는 경우 해당 코퍼스를 이용한 실험의 성능이 저하될 수 있다. 이 때문에 정확한 문장들로 이루어진 코퍼스를 구축하기 위해 다량의 문장 중에서 정확하게 오류 어휘를 탐지할 필요가 있다. 본 논문에서는 대용량 데이터에서 빈도수가 낮은 음절을 이용해 오류 어휘를 탐지하는 방법을 제안하고, 제안 방법을 이용하여 오류 어휘 탐지 시 고려하여야 할 점에 대해 서술한다.

  • PDF

종단 간 심층 신경망을 이용한 한국어 문장 자동 띄어쓰기 (Automatic Word Spacing of the Korean Sentences by Using End-to-End Deep Neural Network)

  • 이현영;강승식
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제8권11호
    • /
    • pp.441-448
    • /
    • 2019
  • 기존의 자동 띄어쓰기 연구는 n-gram 기반의 통계적인 기법을 이용하거나 형태소 분석기를 이용하여 어절 경계면에 공백을 삽입하는 방법으로 띄어쓰기 오류를 수정한다. 본 논문에서는 심층 신경망을 이용한 종단 간(end-to-end) 한국어 문장 자동 띄어쓰기 시스템을 제안한다. 자동 띄어쓰기 문제를 어절 단위가 아닌 음절 단위 태그 분류 문제로 정의하고 음절 unigram 임베딩과 양방향 LSTM Encoder로 문장 음절간의 양방향 의존 관계 정보를 고정된 길이의 문맥 자질 벡터로 연속적인 벡터 공간에 표현한다. 그리고 새로이 표현한 문맥 자질 벡터를 자동 띄어쓰기 태그(B 또는 I)로 분류한 후 B 태그 앞에 공백을 삽입하는 방법으로 한국어 문장의 자동 띄어쓰기를 수행하였다. 자동 띄어쓰기 태그 분류를 위해 전방향 신경망, 신경망 언어 모델, 그리고 선형 체인 CRF의 세 가지 방법의 분류 망에 따라 세 가지 심층 신경망 모델을 구성하고 종단 간 한국어 자동 띄어쓰기 시스템의 성능을 비교하였다. 세 가지 심층 신경망 모델에서 분류 망으로 선형체인 CRF를 이용한 심층 신경망 모델이 더 우수함을 보였다. 학습 및 테스트 말뭉치로는 최근에 구축된 대용량 한국어 원시 말뭉치로 KCC150을 사용하였다.

한의학 고문헌 텍스트에서의 저자 판별 - 기능어의 역할을 중심으로 - (A Comparative Study of Feature Extraction Methods for Authorship Attribution in the Text of Traditional East Asian Medicine with a Focus on Function Words)

  • 오준호
    • 대한한의학원전학회지
    • /
    • 제33권2호
    • /
    • pp.51-59
    • /
    • 2020
  • Objectives : We would like to study what is the most appropriate "feature" to effectively perform authorship attribution of the text of Traditional East Asian Medicine Methods : The authorship attribution performance of the Support Vector Machine (SVM) was compared by cross validation, depending on whether the function words or content words, single word or collocations, and IDF weights were applied or not, using 'Variorum of the Nanjing' as an experimental Corpus. Results : When using the combination of 'function words/uni-bigram/TF', the performance was best with accuracy of 0.732, and the combination of 'content words/unigram/TFIDF' showed the lowest accuracy of 0.351. Conclusions : This shows the following facts from the authorship attribution of the text of East Asian traditional medicine. First, function words play an important role in comparison to content words. Second, collocations was relatively important in content words, but single words have more important meanings in function words. Third, unlike general text analysis, IDF weighting resulted in worse performance.