• Title/Summary/Keyword: word-unigram

Search Result 14, Processing Time 0.019 seconds

A Stochastic Word-Spacing System Based on Word Category-Pattern (어절 내의 형태소 범주 패턴에 기반한 통계적 자동 띄어쓰기 시스템)

  • Kang, Mi-Young;Jung, Sung-Won;Kwon, Hyuk-Chul
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.11
    • /
    • pp.965-978
    • /
    • 2006
  • This paper implements an automatic Korean word-spacing system based on word-recognition using morpheme unigrams and the pattern that the categories of those morpheme unigrams share within a candidate word. Although previous work on Korean word-spacing models has produced the advantages of easy construction and time efficiency, there still remain problems, such as data sparseness and critical memory size, which arise from the morpho-typological characteristics of Korean. In order to cope with both problems, our implementation uses the stochastic information of morpheme unigrams, and their category patterns, instead of word unigrams. A word's probability in a sentence is obtained based on morpheme probability and the weight for the morpheme's category within the category pattern of the candidate word. The category weights are trained so as to minimize the error means between the observed probabilities of words and those estimated by words' individual-morphemes' probabilities weighted according to their categories' powers in a given word's category pattern.

Performance Analysis of a Korean Word Autocomplete System and New Evaluation Metrics (한국어 단어 자동완성 시스템의 성능 분석 및 새로운 평가 방법)

  • Lee, Songwook
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.6
    • /
    • pp.656-661
    • /
    • 2015
  • The goal of this paper is to analyze the performance of a word autocomplete system for mobile devices such as smartphones, tablets, and PCs. The proposed system automatically completes a partially typed string into a full word, reducing the time and effort required by a user to enter text on these devices. We collect a large amount of data from Twitter and develop both unigram and bigram dictionaries based on the frequency of words. Using these dictionaries, we analyze the performance of the word autocomplete system and devise a keystroke profit rate and recovery rate as new evaluation metrics that better describe the characteristics of the word autocomplete problem compared to previous measures such as the mean reciprocal rank or recall.

Two-Phase Clustering Method Considering Mobile App Trends (모바일 앱 트렌드를 고려한 2단계 군집화 방법)

  • Heo, Jeong-Man;Park, So-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.4
    • /
    • pp.17-23
    • /
    • 2015
  • In this paper, we propose a mobile app clustering method using word clusters. Considering the quick change of mobile app trends, the proposed method divides the mobile apps into some semantically similar mobile apps by applying a clustering algorithm to the mobile app set, rather than the predefined category system. In order to alleviate the data sparseness problem in the short mobile app description texts, the proposed method additionally utilizes the unigram, the bigram, the trigram, the cluster of each word. For the purpose of accurately clustering mobile apps, the proposed method manages to avoid exceedingly small or large mobile app clusters by using the word clusters. Experimental results show that the proposed method improves 22.18% from 57.48% to 79.66% on overall accuracy by using the word clusters.

Improving Korean Word-Spacing System Using Stochastic Information (통계 정보를 이용한 한국어 자동 띄어쓰기 시스템의 성능 개선)

  • 최성자;강미영;권혁철
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.883-885
    • /
    • 2004
  • 본 논문은 대용량 말뭉치로부터 어절 unigram과 음절 bigram 통계 정보를 추출하여 구축한 한국어 자동 띄어쓰기 시스템의 성능을 개선하는 방법을 제안한다 어절 통계를 주로 이용하는 기법으로 한국어 문서를 처리할 때, 한국어의 교착어적인 특성으로 인해 자료부족 문제가 발생한다 이물 극복하기 위해서 본 논문은 음절 bigram간 띄어쓸 확률 정보를 이용함으로써 어절로 인식 가능한 추가의 후보 어절을 추정하는 방법을 제안한다. 이와 글이 개선된 시스템의 성능을 다양한 실험 데이터를 사용하여 평가한 결과, 평균 93.76%의 어절 단위 정확도를 얻었다.

  • PDF

POS-Tagging Model Combining Rules and Word Probability (규칙과 어절 확률을 이용한 혼합 품사 태깅 모델)

  • Hwang, Myeong-Jin;Kang, Mi-Young;Kwon, Hyuk-Chul
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10b
    • /
    • pp.11-15
    • /
    • 2006
  • 본 논문은, 긍정적 가중치와 부정적 가중치를 통해 표현되는 규칙에 기반을 둔 품사 태깅 모델과, 형태 소 unigram 정보와 어절 내의 카테고리 패턴에 기반하여 어절 확률을 추정하는 품사 태깅 모델의 장점을 취하고 단점을 보완할 수 있는 혼합 품사 태깅 모델을 제안한다. 이 혼합 모델은 먼저, 규칙에 기반한 품사 태깅을 적용한 후, 규칙이 해결하지 못한 결과에 대해서 통계적인 기법을 사용하여 품사 태깅을 한다. 본 연구는 어절 내 카테고리 패턴정보에 따른 파라미터 set과 형태소 unigram만을 이용해 어절 확률을 계산해 내므로 다른 통계기반 접근방법에서와는 달리 작은 크기의 통계사전만을 필요로 하며, 카테고리 패턴 정보를 사용함으로써 통계기반 접근 방법의 가장 큰 문제점인 data sparseness 문제 또한 줄일 수 있다는 이점이 있다. 특히, 본 논문에서 사용할 통계 모델은 어절 확률에 기반을 두고 있기 때문에 한국어의 특성을 잘 반영할 수 있다. 본 논문에서 제안한 혼합 모델은 규칙이 적용된 후에도 후보열이 둘 이상 남아 오류로 반환되었던 어절 중 24%를 개선한다.

  • PDF

Word Segmentation System Using Extended Syllable bigram (확장된 음절 bigram을 이용한 자동 띄어쓰기 시스템)

  • Lim, Dong-Hee;Chun, Young-Jin;Kim, Hyoung-Joon;Kang, Seung-Shik
    • Annual Conference on Human and Language Technology
    • /
    • 2005.10a
    • /
    • pp.189-193
    • /
    • 2005
  • 본 논문은 통계 기반 방법인 음절 bigram을 이용한 자동 띄어쓰기를 기본 방법으로 하고 경우의 수를 세분화한 확장된 음절 bigram을 이용한 공백 확률, 띄어쓰기 통계를 바탕으로 최종 띄어쓰기 임계치 차등 적용, 에러 사전 적용 3가지 방법을 추가로 사용하는 경우 기본적인 방법만을 쓴 경우보다 띄어쓰기 정확도가 향상된다는 것을 확인하였다. 그리고 해당 음절에 대한 bigram이 없는 경우 확장된 음절 unigram을 통해 근사적으로 계산해 데이터부족 문제를 개선하였다. 한국어 말뭉치와 중국어 말뭉치에 대한 실험을 통해 본 논문에서 제안하는 방법이 한국어 자동 띄어쓰기뿐만 아니라 중국어 단어 분리에 적용할 수 있다는 것도 확인하였다.

  • PDF

A Survey of Machine Translation and Parts of Speech Tagging for Indian Languages

  • Khedkar, Vijayshri;Shah, Pritesh
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.245-253
    • /
    • 2022
  • Commenced in 1954 by IBM, machine translation has expanded immensely, particularly in this period. Machine translation can be broken into seven main steps namely- token generation, analyzing morphology, lexeme, tagging Part of Speech, chunking, parsing, and disambiguation in words. Morphological analysis plays a major role when translating Indian languages to develop accurate parts of speech taggers and word sense. The paper presents various machine translation methods used by different researchers for Indian languages along with their performance and drawbacks. Further, the paper concentrates on parts of speech (POS) tagging in Marathi dialect using various methods such as rule-based tagging, unigram, bigram, and more. After careful study, it is concluded that for machine translation, parts of speech tagging is a major step. Also, for the Marathi language, the Hidden Markov Model gives the best results for parts of speech tagging with an accuracy of 93% which can be further improved according to the dataset.

Error Word Detection in Korean Corpus (한국어 대용량 코퍼스의 오류 어휘 탐지 방안)

  • Choi, Min-Joo;Park, Ji-Hoon;Son, Sung-Hwan;Kang, Seung-Shik
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.500-502
    • /
    • 2019
  • 대용량의 언어 코퍼스를 이용할 때, 오류 어휘가 코퍼스에 포함되어 있는 경우 해당 코퍼스를 이용한 실험의 성능이 저하될 수 있다. 이 때문에 정확한 문장들로 이루어진 코퍼스를 구축하기 위해 다량의 문장 중에서 정확하게 오류 어휘를 탐지할 필요가 있다. 본 논문에서는 대용량 데이터에서 빈도수가 낮은 음절을 이용해 오류 어휘를 탐지하는 방법을 제안하고, 제안 방법을 이용하여 오류 어휘 탐지 시 고려하여야 할 점에 대해 서술한다.

  • PDF

Automatic Word Spacing of the Korean Sentences by Using End-to-End Deep Neural Network (종단 간 심층 신경망을 이용한 한국어 문장 자동 띄어쓰기)

  • Lee, Hyun Young;Kang, Seung Shik
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.11
    • /
    • pp.441-448
    • /
    • 2019
  • Previous researches on automatic spacing of Korean sentences has been researched to correct spacing errors by using n-gram based statistical techniques or morpheme analyzer to insert blanks in the word boundary. In this paper, we propose an end-to-end automatic word spacing by using deep neural network. Automatic word spacing problem could be defined as a tag classification problem in unit of syllable other than word. For contextual representation between syllables, Bi-LSTM encodes the dependency relationship between syllables into a fixed-length vector of continuous vector space using forward and backward LSTM cell. In order to conduct automatic word spacing of Korean sentences, after a fixed-length contextual vector by Bi-LSTM is classified into auto-spacing tag(B or I), the blank is inserted in the front of B tag. For tag classification method, we compose three types of classification neural networks. One is feedforward neural network, another is neural network language model and the other is linear-chain CRF. To compare our models, we measure the performance of automatic word spacing depending on the three of classification networks. linear-chain CRF of them used as classification neural network shows better performance than other models. We used KCC150 corpus as a training and testing data.

A Comparative Study of Feature Extraction Methods for Authorship Attribution in the Text of Traditional East Asian Medicine with a Focus on Function Words (한의학 고문헌 텍스트에서의 저자 판별 - 기능어의 역할을 중심으로 -)

  • Oh, Junho
    • Journal of Korean Medical classics
    • /
    • v.33 no.2
    • /
    • pp.51-59
    • /
    • 2020
  • Objectives : We would like to study what is the most appropriate "feature" to effectively perform authorship attribution of the text of Traditional East Asian Medicine Methods : The authorship attribution performance of the Support Vector Machine (SVM) was compared by cross validation, depending on whether the function words or content words, single word or collocations, and IDF weights were applied or not, using 'Variorum of the Nanjing' as an experimental Corpus. Results : When using the combination of 'function words/uni-bigram/TF', the performance was best with accuracy of 0.732, and the combination of 'content words/unigram/TFIDF' showed the lowest accuracy of 0.351. Conclusions : This shows the following facts from the authorship attribution of the text of East Asian traditional medicine. First, function words play an important role in comparison to content words. Second, collocations was relatively important in content words, but single words have more important meanings in function words. Third, unlike general text analysis, IDF weighting resulted in worse performance.