• Title/Summary/Keyword: word network analysis

Search Result 381, Processing Time 0.027 seconds

An Analysis of Cultural Policy-related Studies' Trend in Korea using Semantic Network Analysis(2008-2017) (언어네트워크분석을 통한 국내 문화정책 연구동향 분석(2008-2017))

  • Park, Yang Woo
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.11
    • /
    • pp.371-382
    • /
    • 2017
  • This study aims to analyze the research trend of cultural policy-related papers based on 832 key words among 186 whole articles in the Journal of Cultural Policy by the Korea Culture & Tourism Institute from October 2008 to January 2017. The analysis was performed using a big data analysis technique called the Semantic Network Analysis. The Semantic Network Analysis consists of frequency analysis, density analysis, centrality analysis including degree centrality, betweenness centrality, and eigenvector centrality. Lastly, the study shows a figure visualizing the results of the centrality analysis through Netdraw program. The most frequently exposed key words were 'culture', 'cultural policy/administration', 'cultural industry/cultural content', 'policy', 'creative industry', in the order. The key word 'culture' was ranked as the first in all the analysis of degree centrality, betweenness centrality and eigenvector centrality, followed by 'policy' and 'cultural policy/administraion'. The key word 'cultural industry/cultural content' with very high frequency recorded high points in degree centrality and eigenvector centrality, but showed relatively low points in betweenness centrality.

The Knowledge Structure of Multicultural Research Papers in Korea (다문화연구의 지식구조에 관한 네트워크 분석)

  • Jang, Im-Sook;Chang, Durk-Hyun;Lee, Soo-Sang
    • Journal of Korean Library and Information Science Society
    • /
    • v.42 no.4
    • /
    • pp.353-374
    • /
    • 2011
  • Analyzing research paper published from 2005 to 2010, this study aims for analysing the research paradigm on multi-culture and understanding the structural characteristics of the multicultural knowledge via scientometric. Co-word network constructed by keywords in documents and their co-occurrence relationships is a kind of mapping knowledge structure. A total of 4,521 and 1,373 papers published between 2005 and 2010 were retrieved from the KRF Registered Journals and Proposed Journals. This paper employs k-core analysis method in the field of mapping knowledge structure to analyze keyword co-occurrence network of multicultural research in Korea. And Netminer 3 is employed to visualize the networks in this paper.

A Study on the Social Perception of Jiu-Jitsu Using Big data Analysis (빅데이터 분석을 활용한 주짓수의 사회적 인식 연구)

  • Kun-hee Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.209-217
    • /
    • 2024
  • The purpose of this study is to explore development plans by analyzing social interests and perceptions of jiu-jitsu using big data analysis. Network analysis, centrality analysis, and CONCOR analysis were conducted by collecting data for the last 10 years of major domestic portal sites. First, 'judo' was found to be the most important related word in network analysis, and 'judo' was also an important word in the analysis of dgree centrality. In the closeness centrality analysis, "defender" was the most important word, and "sports" was the most important word in betweenness centrality. Finally, as a result of CONCOR analysis, four clusters (related sports and marketing, jiu-jitsu competitions, belt test, supplies and expenses) were formed. As a conclusion of the study, first, words such as 'judo', 'exercise', 'competition', 'dobok', 'gym', and 'graduation' should be actively used to promote jiu-jitsu.As a conclusion of the study, first, words such as 'judo', 'exercise', 'contest', 'dobok', 'gym', and 'graduation' should be actively used to promote jiu-jitsu. Second, it is necessary to share information on training costs through various routes, to make awareness of the graduation process or method common, and to develop safety products and create a safe training culture. Third, it is necessary to find ways to continuously increase the influx of new trainees by attracting steady competitions.

Abusive Detection Using Bidirectional Long Short-Term Memory Networks (양방향 장단기 메모리 신경망을 이용한 욕설 검출)

  • Na, In-Seop;Lee, Sin-Woo;Lee, Jae-Hak;Koh, Jin-Gwang
    • The Journal of Bigdata
    • /
    • v.4 no.2
    • /
    • pp.35-45
    • /
    • 2019
  • Recently, the damage with social cost of malicious comments is increasing. In addition to the news of talent committing suicide through the effects of malicious comments. The damage to malicious comments including abusive language and slang is increasing and spreading in various type and forms throughout society. In this paper, we propose a technique for detecting abusive language using a bi-directional long short-term memory neural network model. We collected comments on the web through the web crawler and processed the stopwords on unused words such as English Alphabet or special characters. For the stopwords processed comments, the bidirectional long short-term memory neural network model considering the front word and back word of sentences was used to determine and detect abusive language. In order to use the bi-directional long short-term memory neural network, the detected comments were subjected to morphological analysis and vectorization, and each word was labeled with abusive language. Experimental results showed a performance of 88.79% for a total of 9,288 comments screened and collected.

  • PDF

Analysis of the different of Interest words between Korea and Vietnam using network theory - Focusing on smart city (네트워크 이론을 이용한 한국과 베트남의 관심어 차이 분석 - 스마트시티를 중심으로)

  • Jeong, Seong Yun;Kim, Nam Gon
    • Smart Media Journal
    • /
    • v.11 no.8
    • /
    • pp.73-83
    • /
    • 2022
  • In order to support new construction engineering companies with weak information power to successfully advance into the overseas construction market, this study tried to analyze what are the keywords of interest in the overseas construction market and how they differ from Korea. For this purpose, we recently collected 2,473 news article titles and major articles targeting smart cities that are of high interest in Korea and Vietnam. Through network configuration and topic modeling, we examined the connection relationship between the word of interest and the word of interest. In addition, the influence of the word of interest in the network was measured using PageRank centrality. Through this analysis, it was found that there is a high interest in smart city-related construction, cities, and digital in both countries, and the difference in terms of interest between Korea and Vietnam was inferred. Finally, the limitations of this study and additional research directions to complement them are presented.

Sentiment Analysis on Movie Reviews Using Word Embedding and CNN (워드 임베딩과 CNN을 사용하여 영화 리뷰에 대한 감성 분석)

  • Ju, Myeonggil;Youn, Seongwook
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.15 no.1
    • /
    • pp.87-97
    • /
    • 2019
  • Reaction of people is importantly considered about specific case as a social network service grows. In the previous research on analysis of social network service, they predicted tendency of interesting topic by giving scores to sentences written by user. Based on previous study we proceeded research of sentiment analysis for social network service's sentences, which predict the result as positive or negative for movie reviews. In this study, we used movie review to get high accuracy. We classify the movie review into positive or negative based on the score for learning. Also, we performed embedding and morpheme analysis on movie review. We could predict learning result as positive or negative with a number 0 and 1 by applying the model based on learning result to social network service. Experimental result show accuracy of about 80% in predicting sentence as positive or negative.

Examining Public Responses to Transgressions of CEOs on YouTube: Social and Semantic Network Analysis

  • Jin-A Choi;Sejung Park
    • Journal of Contemporary Eastern Asia
    • /
    • v.23 no.1
    • /
    • pp.18-34
    • /
    • 2024
  • In what was labeled the "nut rage" incident, the vice president of Korean Air, Hyun-Ah Cho (Heather Cho), demonstrated behavior that exemplifies corporate transgression and deviation from societal moral standards toward a flight attendant aboard a flight. Such behavior instigated the public to express negative sentiment on various social media platforms. This study investigates word-of-mouth network on YouTube in response to the crisis, patterns of co-commenting activities across selected YouTube videos, as well as public responses to the incident by employing social and semantic network analysis. A total of 512 YouTube videos featuring the crisis from December 8, 2014 through November 11, 2018, and 52,772 public comments to the videos were collected. The central videos in the network successfully attracted the public's attention and engagements. The results suggest that the video network was decentralized, with multiple videos acting as hubs in the network. The public commented on various videos instead of focusing on a few. The contents of influential videos uploaded by popular news organizations revealed not only Cho's behaviors related to the nut rage crisis but also unrelated illegal behaviors and the moral violations committed by the family members of Korean Air. The public attached derogatory remarks to Cho and her family, and the comments also addressed ethical concerns, management issues of the company, and boycott intentions. The results imply that adverse public reaction was related to the long-standing problem caused by family ownership and governance in large Korean corporations. This Korean Air scandal illustrates backlash toward a leadership breakdown by the family business conglomerate prevalent in the Korean society. This study provides insights for effective handling of similar crises.

Development of Deep Learning Models for Multi-class Sentiment Analysis (딥러닝 기반의 다범주 감성분석 모델 개발)

  • Syaekhoni, M. Alex;Seo, Sang Hyun;Kwon, Young S.
    • Journal of Information Technology Services
    • /
    • v.16 no.4
    • /
    • pp.149-160
    • /
    • 2017
  • Sentiment analysis is the process of determining whether a piece of document, text or conversation is positive, negative, neural or other emotion. Sentiment analysis has been applied for several real-world applications, such as chatbot. In the last five years, the practical use of the chatbot has been prevailing in many field of industry. In the chatbot applications, to recognize the user emotion, sentiment analysis must be performed in advance in order to understand the intent of speakers. The specific emotion is more than describing positive or negative sentences. In light of this context, we propose deep learning models for conducting multi-class sentiment analysis for identifying speaker's emotion which is categorized to be joy, fear, guilt, sad, shame, disgust, and anger. Thus, we develop convolutional neural network (CNN), long short term memory (LSTM), and multi-layer neural network models, as deep neural networks models, for detecting emotion in a sentence. In addition, word embedding process was also applied in our research. In our experiments, we have found that long short term memory (LSTM) model performs best compared to convolutional neural networks and multi-layer neural networks. Moreover, we also show the practical applicability of the deep learning models to the sentiment analysis for chatbot.

Domain Analysis on the Field of Open Access by Co-Word Analysis (동시출현단어 분석 기반 오픈 액세스 분야 지적구조에 관한 연구)

  • Seo, SunKyung;Chung, EunKyung
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.24 no.1
    • /
    • pp.207-228
    • /
    • 2013
  • Due to the advance of scholarly communication, the field of open access has been studied over the last decade. The purpose of this study is to analyze and demonstrate the field of open access via co-word analysis. The data set was collected from Web of Science citation database during the period from January 1998 to July 2012 using the Topic category. A total of 479 journal articles were retrieved and 8,643 noun keywords were extracted from the titles and abstracts. In order to achieve the purpose of this study, network analysis, clustering analysis and multidimensional scaling mapping were used to examine the domain and the sub-domains of open access field. 18 clusters in the network analysis are recognized and 4 clusters are shown in the map of multidimensional scaling. In addition, the centrality analysis in the weighted networks was used to explore the significant keywords in this field. The results of this study are expected to demonstrate and guide the intellectual structure and new approaches of open access field.

A Study on the Research Trends in Domestic/International Information Science Articles by Co-word Analysis (동시출현단어 분석을 통한 국내외 정보학 학회지 연구동향 파악)

  • Kim, Ha Jin;Song, Min
    • Journal of the Korean Society for information Management
    • /
    • v.31 no.1
    • /
    • pp.99-118
    • /
    • 2014
  • This paper carried out co-word analysis of noun and noun phrase using text-mining technique in order to grasp the research trends on domestic and international information science articles. It was conducted based on collected titles and articles of the papers published in the Journal of the Korean Society for Information Management (KOSIM) and Journal of American Society for Information Science and Technology (JASIST) from 1990 to 2013. By dividing whole period into five publication window, this paper was organized into the following processes: 1) analysis of high frequency co-word pair to examine the overall trends of both information science articles 2) analysis of each word appearing with high frequency keyword to grasp the detailed subject 3) focused network analysis of trend after 2010 when distinctively new keyword appeared. The result of the analysis shows that KOSIM has considerable portion of studies conducted regarding topics such as library, information service, information user and information organization. Whereas, JASIST has focused on studies regarding information retrieval, information user, web information, and bibliometrics.