• 제목/요약/키워드: word network analysis

검색결과 381건 처리시간 0.016초

한국농촌계획 온톨로지 구축을 위한 상호정보 기반 단어연결망 분석 (Word Network Analysis based on Mutual Information for Ontology of Korean Rural Planning)

  • 이제명
    • 농촌계획
    • /
    • 제23권3호
    • /
    • pp.37-51
    • /
    • 2017
  • There has been a growing concern on ontology especially in recent knowledge-based industry and defining a field-customized semantic word network is essential for building it. In this paper, a word network for ontology is established with 785 publications of Korean Society of Rural Planning(KSRP), from 1995 to 2017. Semantic relationships between words in the publications were quantitatively measured with the 'normalized pointwise mutual information' based on the information theory. Appearance and co-appearance frequencies of nouns and adjectives in phrases are analyzed based on the assumption that a 'noun phrase' represents a single 'concept'. The word network of KSRP was compared with that of $WordNet^{TM}$, a world-wide thesaurus network, for the verification. It is proved that the KSRP's word network, established in this paper, provides words' semantic relationships based on the common concepts of Korean rural planning research field. With the results, it is expecting that the established word network can present more opportunity for preparation of the fourth industrial revolution to the field of the Korean rural planning.

동시단어분석을 이용한 품질경영분야 지식구조 분석 (The Analysis of Knowledge Structure using Co-word Method in Quality Management Field)

  • 박만희
    • 품질경영학회지
    • /
    • 제44권2호
    • /
    • pp.389-408
    • /
    • 2016
  • Purpose: This study was designed to analyze the behavioral change of knowledge structures and the trends of research topics in the quality management field. Methods: The network structure and knowledge structure of the words were visualized in map form using co-word analysis, cluster analysis and strategic diagram. Results: Summarizing the research results obtained in this study are as follows. First, the word network derived from co-occurrence matrix had 106 nodes and 5,314 links and its density was analyzed to 0.95. Average betweenness centrality of word network was 2.37. In addition, average closeness centrality and average eigenvector centrality of word network were 0.01. Second, by applying optimal criteria of cluster decision and K-means algorithm to word co-occurrence matrix, 106 words were grouped into seven clusters such as standard & efficiency, product design, reliability, control chart, quality model, 6 sigma, and service quality. Conclusion: According to the results of strategic diagram analysis over time, the traditional research topics of quality management field related to reliability, 6 sigma, control chart topics in the third quadrant were revealed to be declined for their study importance. Research topics related to product design and customer satisfaction were found to be an important research topic over analysis periods. Research topic related to management innovation was emerging state and the scope of research topics related to process model was extended to research topics with system performance. Research topic related to service quality located in the first quadrant was analyzed as the key research topic.

Hierarchical Structure in Semantic Networks of Japanese Word Associations

  • Miyake, Maki;Joyce, Terry;Jung, Jae-Young;Akama, Hiroyuki
    • 한국언어정보학회:학술대회논문집
    • /
    • 한국언어정보학회 2007년도 정기학술대회
    • /
    • pp.321-329
    • /
    • 2007
  • This paper reports on the application of network analysis approaches to investigate the characteristics of graph representations of Japanese word associations. Two semantic networks are constructed from two separate Japanese word association databases. The basic statistical features of the networks indicate that they have scale-free and small-world properties and that they exhibit hierarchical organization. A graph clustering method is also applied to the networks with the objective of generating hierarchical structures within the semantic networks. The method is shown to be an efficient tool for analyzing large-scale structures within corpora. As a utilization of the network clustering results, we briefly introduce two web-based applications: the first is a search system that highlights various possible relations between words according to association type, while the second is to present the hierarchical architecture of a semantic network. The systems realize dynamic representations of network structures based on the relationships between words and concepts.

  • PDF

Korean Sentiment Analysis Using Natural Network: Based on IKEA Review Data

  • Sim, YuJeong;Yun, Dai Yeol;Hwang, Chi-gon;Moon, Seok-Jae
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제13권2호
    • /
    • pp.173-178
    • /
    • 2021
  • In this paper, we find a suitable methodology for Korean Sentiment Analysis through a comparative experiment in which methods of embedding and natural network models are learned at the highest accuracy and fastest speed. The embedding method compares word embeddeding and Word2Vec. The model compares and experiments representative neural network models CNN, RNN, LSTM, GRU, Bi-LSTM and Bi-GRU with IKEA review data. Experiments show that Word2Vec and BiGRU had the highest accuracy and second fastest speed with 94.23% accuracy and 42.30 seconds speed. Word2Vec and GRU were found to have the third highest accuracy and fastest speed with 92.53% accuracy and 26.75 seconds speed.

주경로 분석과 연관어 네트워크 분석을 통한 '구전(WoM)' 관련 연구동향 분석 (Analysis of Research Trends of 'Word of Mouth (WoM)' through Main Path and Word Co-occurrence Network)

  • 신현보;김혜진
    • 지능정보연구
    • /
    • 제25권3호
    • /
    • pp.179-200
    • /
    • 2019
  • 구전(Word-of-Mouth) 활동은 오래 전부터 기업의 마케팅 과정에서 중요성을 인식하고 특히 마케팅 분야에서 많은 주목을 받아왔다. 최근에는 인터넷의 발달에 따라 온라인 뉴스, 온라인 커뮤니티 등에서 사람들이 지식과 정보를 주고 받는 방식이 다양해지면서 구전은 후기, 평점, 좋아요 등으로 입소문의 양상이 다각화되고 있다. 이러한 현상에 따라 구전에 관한 다양한 연구들이 선행되어왔으나, 이들을 종합적으로 분석한 메타 분석 연구는 부재하다. 본 연구는 학술 빅데이터를 활용해 구전 관련 연구동향을 알아내기 위해서 텍스트 마이닝 기법을 적용하여 주요 연구들을 추출하고 시기별로 연구들의 주요 쟁점을 파악하는 기법을 제안하였다. 이를 위해서 1941년부터 2018년까지 인용 데이터베이스인 Scopus에서 'Word-of-Mouth'라는 키워드로 검색되는 총 4389건의 문헌을 수집하였고, 영어 형태소 분석과 불용어 제거 등 전처리 과정을 통해 데이터를 정제하였다. 본 연구는 학문 분야의 발전 궤적을 추적하는 데 활용되는 주경로 분석기법을 적용해 구전과 관련된 핵심 연구들을 추출하여 연구동향을 거시적 관점에서 제시하였고, 단어동시출현 정보를 추출하여 키워드 간 네트워크를 구축하여 시기별로 구전과 관련된 연관어들이 어떻게 변화되었는지 살펴봄으로써 연구동향을 미시적 관점에서 제시하였다. 수집된 문헌 데이터를 기반으로 인용 네트워크를 구축하고 SPC 가중치를 적용하여 키루트 주경로를 추출한 결과 30개의 문헌으로 구성된 주경로가 추출되었고, 연관어 네트워크 분석을 통해서는 시기별로 온라인 시대, 관광 산업 등 다양한 산업군 등 산업 변화가 반영돼 시대적 변화와 더불어 발전하고 있는 학술적 영역의 변화를 확인할 수 있었다.

Word2Vec과 WordNet 기반 불확실성 단어 간의 네트워크 분석에 관한 연구 (Network Analysis between Uncertainty Words based on Word2Vec and WordNet)

  • 허고은
    • 한국문헌정보학회지
    • /
    • 제53권3호
    • /
    • pp.247-271
    • /
    • 2019
  • 과학에서 지식의 불확실성은 명제가 현재 상태로는 참도 거짓도 아닌 불확실한 상태를 의미한다. 기존의 연구들은 학술 문헌에 표현된 명제를 분석하여 불확실성을 의미하는 단어를 수동적으로 구축하고 구축한 코퍼스를 대상으로 규칙 기반, 기계 학습 기반의 성능평가를 수행해왔다. 불확실성 단어 구축의 중요성은 인지하고 있지만 단어의 의미를 분석하여 자동적으로 확장하고자 하는 시도들은 부족했다. 한편, 계량정보학이나 텍스트 마이닝 기법을 이용하여 네트워크의 구조를 파악하는 연구들은 다양한 학문분야에서 지적 구조와 관계성을 파악하기 위한 방법으로 널리 활용되고 있다. 따라서, 본 연구에서는 기존의 불확실성 단어를 대상으로 Word2Vec을 적용하여 의미적 관계성을 분석하였고, 영어 어휘 데이터베이스이자 시소러스인 WordNet을 적용하여 불확실성 단어와 연결된 상위어, 하위어 관계와 동의어 기반 네트워크 분석을 수행하였다. 이를 통해 불확실성 단어의 의미적, 어휘적 관계성을 구조적으로 파악하였으며, 향후 불확실성 단어의 자동 구축의 확장 가능성을 제시하였다.

소셜네트워크 분석과 Co-word 분석을 사용한 Altmetric 연구 개발동향 (Development Tendency of Altmetrics Research: Using Social Network Analysis and Co-word Analysis)

  • 이현창;이가배;신성윤
    • 한국정보통신학회논문지
    • /
    • 제21권11호
    • /
    • pp.2089-2094
    • /
    • 2017
  • 알트메트릭스는 인용을 기반으로 한 전통적인 지표를 보완하기 위한 측정 지표이면서 정략적 데이터이다. 이러한 알트메트릭스 에 관한 연구는 지난 몇 년간 전통적인 계량 정보학의 보완에 힘입어 중요한 비중을 차지해오고 있다. 본 논문은 알트메트릭스 연구 현황과 동향을 파악하는 것을 목적으로 한다. 총 187건의 논문을 분석하였으며, 이를 통해 2005년이후로 알트메트릭스 연구에 지속적인 상승이 있음을 알 수 있다. 소셜 네트워크 분석과 co-word 분석을 사용하여 저자 협동 네트워크와 키워드 공존 네트워크를 구축한다. 계층적 클러스터링으로 4개의 알트메트릭스 연구가 발견되었으며, 그 결과는 알트메트릭스의 추후 연구에 매우 유용할 수 있다.

Segmenting Chinese Texts into Words for Semantic Network Analysis

  • Danowski, James A.
    • Journal of Contemporary Eastern Asia
    • /
    • 제16권2호
    • /
    • pp.110-144
    • /
    • 2017
  • Unlike most languages, written Chinese has no spaces between words. Word segmentation must be performed before semantic network analysis can be conducted. This paper describes how to perform Chinese word segmentation using the Stanford Natural Language Processing group's Stanford Word Segmenter v. 3.8.0, released in June 2017.

Spatio-temporal방법을 이용한 지역명 인식에 관한 연구 (A Study on the recognition of local name using Spatio-Temporal method)

  • 지원우
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1993년도 학술논문발표회 논문집 제12권 1호
    • /
    • pp.121-124
    • /
    • 1993
  • This paper is a study on the word recognition using neural network. A limited vocabulary, speaker independent, isolated word recognition system has been built. This system recognizes isolated word without performing segmentation, phoneme identification, or dynamic time wrapping. It needs a static pattern approach to recognize a spatio-temporal pattern. The preprocessing only includes preceding and tailing silence removal, and word length determination. A LPC analysis is performed on each of 24 equally spaced frames. The PARCOR coefficients plus 3 other features from each frame is extracted. In order to simplify a structure of neural network, we composed binary code form to decrease output nodes.

  • PDF

간호학 학술논문의 주제 분석을 위한 텍스트네크워크분석방법 활용 (Using Text Network Analysis for Analyzing Academic Papers in Nursing)

  • 박찬숙
    • Perspectives in Nursing Science
    • /
    • 제16권1호
    • /
    • pp.12-24
    • /
    • 2019
  • Purpose: This study examined the suitability of using text network analysis (TNA) methodology for topic analysis of academic papers related to nursing. Methods: TNA background theories, software programs, and research processes have been described in this paper. Additionally, the research methodology that applied TNA to the topic analysis of the academic nursing papers was analyzed. Results: As background theories for the study, we explained information theory, word co-occurrence analysis, graph theory, network theory, and social network analysis. The TNA procedure was described as follows: 1) collection of academic articles, 2) text extraction, 3) preprocessing, 4) generation of word co-occurrence matrices, 5) social network analysis, and 6) interpretation and discussion. Conclusion: TNA using author-keywords has several advantages. It can utilize recognized terms such as MeSH headings or terms chosen by professionals, and it saves time and effort. Additionally, the study emphasizes the necessity of developing a sophisticated research design that explores nursing research trends in a multidimensional method by applying TNA methodology.