• 제목/요약/키워드: word embedding model

검색결과 115건 처리시간 0.023초

Sentence model based subword embeddings for a dialog system

  • Chung, Euisok;Kim, Hyun Woo;Song, Hwa Jeon
    • ETRI Journal
    • /
    • 제44권4호
    • /
    • pp.599-612
    • /
    • 2022
  • This study focuses on improving a word embedding model to enhance the performance of downstream tasks, such as those of dialog systems. To improve traditional word embedding models, such as skip-gram, it is critical to refine the word features and expand the context model. In this paper, we approach the word model from the perspective of subword embedding and attempt to extend the context model by integrating various sentence models. Our proposed sentence model is a subword-based skip-thought model that integrates self-attention and relative position encoding techniques. We also propose a clustering-based dialog model for downstream task verification and evaluate its relationship with the sentence-model-based subword embedding technique. The proposed subword embedding method produces better results than previous methods in evaluating word and sentence similarity. In addition, the downstream task verification, a clustering-based dialog system, demonstrates an improvement of up to 4.86% over the results of FastText in previous research.

Word Embedding 자질을 이용한 한국어 개체명 인식 및 분류 (Korean Named Entity Recognition and Classification using Word Embedding Features)

  • 최윤수;차정원
    • 정보과학회 논문지
    • /
    • 제43권6호
    • /
    • pp.678-685
    • /
    • 2016
  • 한국어 개체명 인식에 다양한 연구가 있었지만, 영어 개체명 인식에 비해 자질이 부족한 문제를 가지고 있다. 본 논문에서는 한국어 개체명 인식의 자질 부족 문제를 해결하기 위해 word embedding 자질을 개체명 인식에 사용하는 방법을 제안한다. CBOW(Continuous Bag-of-Words) 모델을 이용하여 word vector를 생성하고, word vector로부터 K-means 알고리즘을 이용하여 군집 정보를 생성한다. word vector와 군집 정보를 word embedding 자질로써 CRFs(Conditional Random Fields)에 사용한다. 실험 결과 TV 도메인과 Sports 도메인, IT 도메인에서 기본 시스템보다 각각 1.17%, 0.61%, 1.19% 성능이 향상되었다. 또한 제안 방법이 다른 개체명 인식 및 분류 시스템보다 성능이 향상되는 것을 보여 그 효용성을 입증했다.

단어 의미와 자질 거울 모델을 이용한 단어 임베딩 (A Word Embedding used Word Sense and Feature Mirror Model)

  • 이주상;신준철;옥철영
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제23권4호
    • /
    • pp.226-231
    • /
    • 2017
  • 단어 표현은 기계학습을 사용하는 자연어 처리 분야에서 중요하다. 단어 표현은 단어를 텍스트가 아닌 컴퓨터가 분별할 수 있는 심볼로 표현하는 방법이다. 기존 단어 임베딩은 대량의 말뭉치를 이용하여 문장에서 학습할 단어의 주변 단어를 이용하여 학습한다. 하지만 말뭉치 기반의 단어 임베딩은 단어의 등장 빈도수나 학습할 단어의 수를 늘리기 위해서는 많은 양의 말뭉치를 필요로 한다. 본 논문에서는 말뭉치 기반이 아닌 단어의 뜻풀이와 단어의 의미 관계(상위어, 반의어)를 이용하며 기존 Word2Vec의 Skip-Gram을 변형한 자질거울모델을 사용하여 단어를 벡터로 표현하는 방법을 제시한다. 기존 Word2Vec에 비해 적은 데이터로 많은 단어들을 벡터로 표현 가능하였으며 의미적으로 유사한 단어들이 비슷한 벡터를 형성하는 것을 확인할 수 있다. 그리고 반의어 관계에 있는 두 단어의 벡터가 구분되는 것을 확인할 수 있다.

MEDLINE 검색을 통한 산업안전보건 분야에서의 인간공학 연구동향 : 워드임베딩을 활용한 초록 단어 모델링을 중심으로 (Research Trends of Ergonomics in Occupational Safety and Health through MEDLINE Search: Focus on Abstract Word Modeling using Word Embedding)

  • 김준희;황의재;안선희;곽경태;정성훈
    • 한국안전학회지
    • /
    • 제36권5호
    • /
    • pp.61-70
    • /
    • 2021
  • This study aimed to analyze the research trends of the abstract data of ergonomic studies registered in MEDLINE, a medical bibliographic database, using word embedding. Medical-related ergonomic studies mainly focus on work-related musculoskeletal disorders, and there are no studies on the analysis of words as data using natural language processing techniques, such as word embedding. In this study, the abstract data of ergonomic studies were extracted with a program written with selenium and BeutifulSoup modules using python. The word embedding of the abstract data was performed using the word2vec model, after which the data found in the abstract were vectorized. The vectorized data were visualized in two dimensions using t-Distributed Stochastic Neighbor Embedding (t-SNE). The word "ergonomics" and ten of the most frequently used words in the abstract were selected as keywords. The results revealed that the most frequently used words in the abstract of ergonomics studies include "use", "work", and "task". In addition, the t-SNE technique revealed that words, such as "workplace", "design", and "engineering," exhibited the highest relevance to ergonomics. The keywords observed in the abstract of ergonomic studies using t-SNE were classified into four groups. Ergonomics studies registered with MEDLINE have investigated the risk factors associated with workers performing an operation or task using tools, and in this study, ergonomics studies were identified by the relationship between keywords using word embedding. The results of this study will provide useful and diverse insights on future research direction on ergonomic studies.

지지벡터기계를 이용한 단어 의미 분류 (Word Sense Classification Using Support Vector Machines)

  • 박준혁;이성욱
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제5권11호
    • /
    • pp.563-568
    • /
    • 2016
  • 단어 의미 분별 문제는 문장에서 어떤 단어가 사전에 가지고 있는 여러 가지 의미 중 정확한 의미를 파악하는 문제이다. 우리는 이 문제를 다중 클래스 분류 문제로 간주하고 지지벡터기계를 이용하여 분류한다. 세종 의미 부착 말뭉치에서 추출한 의미 중의성 단어의 문맥 단어를 두 가지 벡터 공간에 표현한다. 첫 번째는 문맥 단어들로 이뤄진 벡터 공간이고 이진 가중치를 사용한다. 두 번째는 문맥 단어의 윈도우 크기에 따라 문맥 단어를 단어 임베딩 모델로 사상한 벡터 공간이다. 실험결과, 문맥 단어 벡터를 사용하였을 때 약 87.0%, 단어 임베딩을 사용하였을 때 약 86.0%의 정확도를 얻었다.

Word Sense Disambiguation Using Embedded Word Space

  • Kang, Myung Yun;Kim, Bogyum;Lee, Jae Sung
    • Journal of Computing Science and Engineering
    • /
    • 제11권1호
    • /
    • pp.32-38
    • /
    • 2017
  • Determining the correct word sense among ambiguous senses is essential for semantic analysis. One of the models for word sense disambiguation is the word space model which is very simple in the structure and effective. However, when the context word vectors in the word space model are merged into sense vectors in a sense inventory, they become typically very large but still suffer from the lexical scarcity. In this paper, we propose a word sense disambiguation method using word embedding that makes the sense inventory vectors compact and efficient due to its additive compositionality. Results of experiments with a Korean sense-tagged corpus show that our method is very effective.

가중 문맥벡터와 X-means 방법을 이용한 변형 다의어스킵그램 (Modified multi-sense skip-gram using weighted context and x-means)

  • 정현우;이은령
    • 응용통계연구
    • /
    • 제34권3호
    • /
    • pp.389-399
    • /
    • 2021
  • 최근 자연어 처리 문제에서의 단어 임베딩은 아주 큰 주목을 받고 있는 연구 주제이며 스킵그램은 성공적인 단어 임베딩 기법 중 하나이다. 주변단어들 정보를 이용해서 단어들의 의미를 학습하여 단어 임베딩 벡터를 할당하며 텍스트 자료를 효과적으로 분석할 수 있게 한다. 그러나 벡터 공간 모델의 한계로 인해 기본적인 단어 임베딩 방법들은 모든 단어가 하나의 의미를 가지고 있다는 것을 가정한다. 다의어, 즉 하나 이상의 의미를 가진 단어가 실생활에서 존재 하기 때문에 Neelakantan 등 (2014)은 군집분석 기법을 이용하여 다의어의 여러 의미들에 해당하는 의미 임베딩 벡터를 찾기 위해 MSSG (multi-sense skip-gram)를 제안했다. 본 논문에서는 MSSG의 통계적 성능을 개선시킬 수 있는 변형된 MSSG 방법을 제안한다. 먼저, 가중치를 활용한 가중문맥 벡터를 제안한다. 나아가, 군집의 수, 즉 다의어의 의미 수를 자료에서 자동적으로 추정해주는 x-means 방법을 활용한 알고리즘을 제안한다. 본 논문에서 수행한 실증자료를 기반한 모의실험에서 제안한 방법은 기존 방법에 비해 우수한 성능을 보여주었다.

Ontology Matching Method Based on Word Embedding and Structural Similarity

  • Hongzhou Duan;Yuxiang Sun;Yongju Lee
    • International journal of advanced smart convergence
    • /
    • 제12권3호
    • /
    • pp.75-88
    • /
    • 2023
  • In a specific domain, experts have different understanding of domain knowledge or different purpose of constructing ontology. These will lead to multiple different ontologies in the domain. This phenomenon is called the ontology heterogeneity. For research fields that require cross-ontology operations such as knowledge fusion and knowledge reasoning, the ontology heterogeneity has caused certain difficulties for research. In this paper, we propose a novel ontology matching model that combines word embedding and a concatenated continuous bag-of-words model. Our goal is to improve word vectors and distinguish the semantic similarity and descriptive associations. Moreover, we make the most of textual and structural information from the ontology and external resources. We represent the ontology as a graph and use the SimRank algorithm to calculate the structural similarity. Our approach employs a similarity queue to achieve one-to-many matching results which provide a wider range of insights for subsequent mining and analysis. This enhances and refines the methodology used in ontology matching.

Latent Semantic Analysis Approach for Document Summarization Based on Word Embeddings

  • Al-Sabahi, Kamal;Zuping, Zhang;Kang, Yang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권1호
    • /
    • pp.254-276
    • /
    • 2019
  • Since the amount of information on the internet is growing rapidly, it is not easy for a user to find relevant information for his/her query. To tackle this issue, the researchers are paying much attention to Document Summarization. The key point in any successful document summarizer is a good document representation. The traditional approaches based on word overlapping mostly fail to produce that kind of representation. Word embedding has shown good performance allowing words to match on a semantic level. Naively concatenating word embeddings makes common words dominant which in turn diminish the representation quality. In this paper, we employ word embeddings to improve the weighting schemes for calculating the Latent Semantic Analysis input matrix. Two embedding-based weighting schemes are proposed and then combined to calculate the values of this matrix. They are modified versions of the augment weight and the entropy frequency that combine the strength of traditional weighting schemes and word embedding. The proposed approach is evaluated on three English datasets, DUC 2002, DUC 2004 and Multilingual 2015 Single-document Summarization. Experimental results on the three datasets show that the proposed model achieved competitive performance compared to the state-of-the-art leading to a conclusion that it provides a better document representation and a better document summary as a result.

다양한 임베딩 모델들의 하이퍼 파라미터 변화에 따른 성능 분석 (Performance analysis of Various Embedding Models Based on Hyper Parameters)

  • 이상아;박재성;강상우;이정엄;김선아
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2018년도 제30회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.510-513
    • /
    • 2018
  • 본 논문은 다양한 워드 임베딩 모델(word embedding model)들과 하이퍼 파라미터(hyper parameter)들을 조합하였을 때 특정 영역에 어떠한 성능을 보여주는지에 대한 연구이다. 3 가지의 워드 임베딩 모델인 Word2Vec, FastText, Glove의 차원(dimension)과 윈도우 사이즈(window size), 최소 횟수(min count)를 각기 달리하여 총 36개의 임베딩 벡터(embedding vector)를 만들었다. 각 임베딩 벡터를 Fast and Accurate Dependency Parser 모델에 적용하여 각 모들의 성능을 측정하였다. 모든 모델에서 차원이 높을수록 성능이 개선되었으며, FastText가 대부분의 경우에서 높은 성능을 내는 것을 알 수 있었다.

  • PDF