• Title/Summary/Keyword: wood-based composite panels

Search Result 18, Processing Time 0.026 seconds

Evaluation of Anti Fungal Efficacy on Different Formaldehyde Level of Wood-Based Composite Panels (목질판상제품의 포름알데히드 방출등급과 항균성 평가)

  • Son, Dong Won;Park, Sang-Bum
    • Journal of the Korea Furniture Society
    • /
    • v.24 no.3
    • /
    • pp.257-262
    • /
    • 2013
  • This study was carried out to investigate the susceptibility of wood-based composite panels exposed to mould and sap-stain fungi. Five wood deterioration fungi (three mould fungi, two sap stain fungi) were inoculated into two types of commercial wood-based composite panels (medium density fiberboard and particleboard), which have three class of formaldehyde emission. All wood-based composite panels were more or less susceptible to mould and sap stain fungi. The attacking mode of the fungi was highly dependent on formaldehyde emission. This study indicates that all wood-based composite panels, specially low formaldehyde emission class panels should be considered to prevent fungal deterioration when they are used for exterior and humid interior applications.

  • PDF

Studies on Wood-based Composite Panel with Waste Tire - Properties of Composite Boards in Relation to Hot Pressing Conditions - (폐타이어를 이용한 목질계 복합판넬의 연구 - 열압조건에 의한 재질특성 -)

  • Lee, Weon-Hee;Park, Sang-Jin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.29-38
    • /
    • 1997
  • The effect and control of wood property of reconstituted composite panels for improved board properties by wood-waste materials and development of combination method for heterogeneous materials have been of interest to the wood science researchers. The purpose of this study is to consider the properties in relation to hot pressing conditions and to develope the optimum hot pressing condition with waste wood and waste tire for the manufacturing of composite boards. The study of composite boards for recycling of wood and waste tire is nothing up to the present. Physical and mechanical properties such as specific gravity, moisture content, swelling coefficient, modulus of rupture and modulus of elasticity in bending test were studied. The condition of 3-stage press time for the lowest moisture content of composite board was $4{\rightarrow}3{\rightarrow}3$ minutes. Specific gravity of composite panels was affected mainly by the amount of rubber chip. Because of the low rigidity and high elasticity in rubber chip, it is considered the composite panel was adequate material in the place of compression load, but not bending load. Therefore, it was concluded that a use of rubber-based wood composite panel is proper to the interior materials such as floor a room than exterior materials. From the test results, the most optimum hot pressing conditions were $4{\rightarrow}3{\rightarrow}3$ minutes for 3-stage press time and $45{\rightarrow}20{\rightarrow}5kg/cm^2$ for 3-stage press pressure. The rubber-based wood composite panel was very excellent in elasticity by combination of rubber chip in comparison with existing other wood-based materials. Therefore, it was considered that rubber-based wood composites can be applicable to every interior materials such as floor a room and will be expected to effective reuse and recycle of waste tires and wood-waste materials, and will be contribute to protection of environment pollution in earth.

  • PDF

Formaldehyde Emission of Wood-Based Composite Panels with Different Surface Lamination Materials Using Desiccator Method

  • Park, Byung-Dae;Kang, Eun Chang;Lee, Sang-Min;Park, Jong Young
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.4
    • /
    • pp.600-606
    • /
    • 2016
  • Wood-based composite panels such as plywood, particleboard (PB), or medium density fiberboard (MDF) are mostly used in the lamination on their surface for the manufacturing of furniture, or interior building products, the concern on the formaldehyde emission (FE) from the surface laminated wood panels is increasingly attracting attentions from the public. Thus, this study was conducted to understand influence of surface laminating materials to the FE from PB and MDF with or without edge sealing, using 24-hour desiccator method. Both PB samples that had been laminated on their surface with low-pressure laminate (LPL) or polypropylene (PP) film and MDF that had been treated with poly(vinyl chloride) (PVC) or coating were tested for the FE with or without edge sealing. As expected, the FE of PB with the sealed edges decreased to 37.4% and 80.7% with the LPL and PP lamination, respectively. The surface laminated MDF with the sealed edges also showed a decrease in the emission up to 57.8% and 54.3%, with the PVC lamination and coating, respectively. However, the coated MDF samples showed 5.3% increase in the emission when their edges were not sealed, indicating a FE form the solvent used for coating. These results showed that the type of surface lamination materials on wood-based composite panels has a great impact on their resultant FE, indicating that the influence of surface laminating materials should be taken into consideration for the formaldehyde mission measurement.

Physical and Mechanical Properties of Wood Fiber-Polypropylene Fiber Composite Panel

  • Kim, Jee-Woong;Eom, Young-Geun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.36-46
    • /
    • 2001
  • This study was to find a way of reusing wood and plastic wastes, which considered as a troublesome problem to be solved in this age of mass production and consumption, in manufacturing wood fiber-polypropylene fiber composite panel. And the feasibility of this composite panel as a substitute for existing headliner base panel of automobile was also discussed, especially based on physical and mechanical performance. Nonwoven web composite panels were made from wood fiber and polypropylene fiber formulations of 50 : 50, 60 : 40, and 70 : 30, based on oven-dry weight, with densities of 0.4, 0.5, 0.6, and 0.7 g/$cm^3$. At the same density levels, control fiberboards were also manufactured for performance comparison with the composite panels. Their physical and mechanical properties were tested according to ASTM D 1037-93. To elucidate thickness swelling mechanism of composite panel through the observation of morphological change of internal structures, the specimens before and after thickness swelling test by 24-hour immersion in water were used in scanning electron microscopy. Test results in this study showed that nonwoven web composite panel from wood fibers and polypropylene fibers had superior physical and mechanical properties to control fiberboard. In the physical properties of composite panel, dimensional stability improved as the content of polypropylene fiber increased, and the formulation of wood fiber and polypropylene fiber was considered to be a significant factor in the physical properties. Water absorption decreased but thickness swelling slightly increased with the increase of panel density. In the mechanical properties of composite panel, the bending modulus of rupture (MOR) and modulus of elasticity (MOE) appeared to improve with the increase of panel density under all the tested conditions of dry, heated, and wet. The formulation of wood fiber and polypropylene fiber was considered not to be a significant factor in the mechanical properties. All the bending MOR values under the dry, heated, and wet conditions met the requirements in the existing headliner base panel of resin felt.

  • PDF

Effective Equivalent Finite Element Model for Impact Limiter of Nuclear Spent Fuel Shipping Cask made of Sandwich Composites Panels (사용후 핵연료 수송용기 샌드위치 복합재 충격완충체의 유효등가 유한요소 모델 제시)

  • Kang, Seung-Gu;Im, Jae-Moon;Shin, Kwang-Bok;Choi, Woo-Suk
    • Composites Research
    • /
    • v.28 no.2
    • /
    • pp.58-64
    • /
    • 2015
  • The purpose of this paper is to suggest the effective equivalent finite element model for the impact limiter of a nuclear spent fuel shipping cask made of sandwich composite panels. The sandwich composite panels were composed of a metallic facesheet and a core material made of urethane foam, balsa wood and red wood, respectively. The effective equivalent finite element model for the impact limiter was proposed by comparing the results of low-velocity impact test of sandwich panels. An explicit finite element analysis based on LS-DYNA 3D was done in this study. The results showed that the solid elements were recommended to model the facesheet and core of sandwich panels for impact limiter compared to combination modeling method, in which the layered shell element for facesheet and solid element for core material are used. In particular, the solid element for balsa and red wood core materials should be modeled by the element elimination approach.

Simultaneous Improvement of Formaldehyde Emission and Adhesion of Medium-Density Fiberboard Bonded with Low-Molar Ratio Urea-Formaldehyde Resins Modified with Nanoclay

  • WIBOWO, Eko Setio;LUBIS, Muhammad Adly Rahandi;PARK, Byung-Dae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.5
    • /
    • pp.453-461
    • /
    • 2021
  • In wood-based composite panels, low-molar ratio (LMR) urea-formaldehyde (UF) resins usually result in reduced formaldehyde emission (FE) at the expense of poor adhesion. However, the FE and adhesion of medium-density fiberboard (MDF) bonded with LMR UF resins were both improved in this study. The modified LMR UF resins with transition metal ion-modified bentonite (TMI-BNT) nanoclay simultaneously improved the FE and adhesion of MDF panels. The modified LMR UF resins with 5% TMI-BNT resulted in a 37.1% FE reduction and 102.6% increase in the internal bonding (IB) strength of MDF panels. Furthermore, thickness swelling and water absorption also significantly decreased to 13.0% and 24.9%, respectively. These results imply that TMI-BNT modification of LMR UF resins could enhance the formation of a three-dimensional network rather than crystalline domains, resulting in improved cohesion.

Air Pollutant Emission Factors from Composite Wood Products Manufacturing in Korea

  • Lee, Eun-Jung;Jung, Dong-Il;Kim, Dai-Gon;Lee, Sue-Been;Kang, Kyoung-Hee;Hong, Ji-Hyung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.E2
    • /
    • pp.57-65
    • /
    • 2007
  • In Korea, there is a general lack of information available on air emissions from industry. The reasons for this include the lack of regulatory requirements for emission monitoring, limited information on specific industries, and difficulties in monitoring certain sources. This paper presents the first detailed air pollutant emission factors from composite wood product manufacturing in Korea. This study introduced emission factors for wood-based panels such as plywood, particle board (PB), and medium density fiberboard (MDF). The emission factors of particulate matters (PM) and hazardous air pollutants (HAPs) from MDF were higher than that from other wood products. The concentration of total volatile organic compounds (TVOCs) for hot press from wood-based panels was higher than drying or gluing processes. Emissions data from NPIP were compared to the data from the suggested emission factors in this study and the US EPA's. The data from our emission factors were closer to the observed results than the data using the US EPA's emission factor.

Measuring Methods and Their Improvement of Formaldehyde Emission from Wood-Based Panels (목질제품의 포름알데히드방출량 측정방법과 개선방안)

  • Park Byung-Dae;Park Jong Young
    • Journal of the Korea Furniture Society
    • /
    • v.15 no.2
    • /
    • pp.1-17
    • /
    • 2004
  • This paper attempted to review measuring methods of formaldehyde emission from wood-based panel products. Methods included for the discussion were desiccator methods, extraction method, and various chamber methods. First, the procedures and testing conditions of 24-hour desiccator method was critically reviewed, and an improvement of this method was proposed to meet international standards. Two different small chamber methods ($20\ell$ and $1m^3$ chamber methods) were also compared in terms of their advantages and disadvantages. In addition, the regulation levels of formaldehyde emission of wood-based composite panels were compared for different countries. The selection of a reference method of measuring formaldehyde emission of wood panel products should consider the ease of conducting test and cost required. Results should be exchangeable for different methods.

  • PDF

Physical and Mechanical Properties, Thermal Conductivity and Fire-Proof Performance of Wood-Cement Board (목질.시멘트보드의 물리.기계적 성질, 열전도성 및 내화성)

  • 서진석;박종영
    • Journal of the Korea Furniture Society
    • /
    • v.14 no.2
    • /
    • pp.31-38
    • /
    • 2003
  • This study was carried out to investigate characteristics of wood-based panels and wood-cement board for the possible uses as flooring and wall materials. The optimum cement/wood ratio(C/W ratio) of wood~cement board manufactured by clamp-pressing was from 2.7 to 3.2. The dimesional stability was superior in the C/W ratio of 3.2. Particularly, the dimensional stability of cement board using fine particle for particleboard face layer was favorable through three levels of C/W ratio. According to types of wooden material, bending strength of cement board using coarse particle for particleboard core layer or old newspaper(ONP) fiber was relatively higher than others. Thermal conductivities of wood-cement boards were no lower than that of gypsum board, and higher than those of plywood and boards. In case of wood-cement board of the C/W ratio of 2.7, the fire-proof performances of cement composite boards were greater than that of gypsum board, and weight loss reached to about a half of gypsum board. Then, wood-cement boards showed superior fire-proof performance compared to wood-based panels.

  • PDF

Soybean-based Green Adhesive for Environment-friendly Furniture Material

  • Jeon, Ji-Soo;Lee, Jeong-Hun;Kim, Su-Min
    • Journal of the Korea Furniture Society
    • /
    • v.22 no.3
    • /
    • pp.174-182
    • /
    • 2011
  • Over the last decade, Sick Building Syndrome has become a significant social issue in Korea and many methods have been considered to maintain comfortable indoor air quality. To reduce toxic substances emitted from wood composite products, the source control is an efficient method through the reduction of formaldehyde content by using natural material-based adhesives for composite wood products production. Among alternative materials, soybean protein is considered an appropriate natural material to replace formaldehyde-based resin and many efforts have been made to produce new products, such as soap, shampoo, ink, resin, adhesive and textile through changing the chemical or physical properties of soybean. To process soybeans into these useful products, the beans are dehulled and the oil is removed by crushing at very high pressure or by solvent extraction. For use soybean as an adhesive, it is processed at temperatures below $70^{\circ}C$ to preserve the alkaline solubility of the proteins. In addition, soybean-based adhesive is undergone treatment process to improve mechanical properties using urea, urease inhibitor N-(n-butyl) thiophosphoric triamide and sodium dodecyl sulfate. The modified soybean-based adhesive exhibited sufficient mechanical properties to use as an adhesive for composite wood products. This paper is a review article to discuss the possibilities of soybean-based adhesive for environment-friendly furniture materials.

  • PDF