• Title/Summary/Keyword: wood plastic composite

Search Result 42, Processing Time 0.032 seconds

Analysis of Mechanical Properties of Wood Flours Composites to Improve the Strength of Truck Deck Floor Boards (트럭 Deck Floor Board의 강도향상을 위한 목분복합재의 기계적특성 분석)

  • Yun, Sung-Woo;Go, Sun-Ho;Kim, Hong-Gun;Kwac, Lee-Ku
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.1
    • /
    • pp.24-30
    • /
    • 2019
  • The deck floor of a the cargo truck becomesis damaged and aged due to the continuous loading of the loading cargo and external environmental factors. Floor boards made of wood and metal are often used. In the case of wood, the cost is high due to the use of imported wood, and the strength is easily deterioratesd due to environmental factors. In the case of metal materials, the durability is higher than that of wood, but problems are raised due to the effect of major factors that hinder the weight reduction, and the effects of corrosion. In order to replace this stucturestructural design, this study proposed a wood fiber composite using natural raw materials. Woody composites are being used as environmentally and friendly exterior materials with the combined advantages of plastic, and wood,; low cost and low density. However, due to the nature of the woody composites, the properties are differentdiffer depending on the contents of the matrix, reinforcing agent, additives, compatibilizer, etc. In this study, we investigate these problems through analysis of the microstructure and mechanical properties according to proper content and injection molding conditions. As a result, it is considered that the wood deck composite can replaced the current Deck Floor Boardreplace current deck floor boards through continuous continued research and results of this study.

Comparison with Combustion Properties of Wood-Plastic Composites (Wood-Plastic Composite의 연소특성 비교)

  • Song, Young-Ho;Shin, Baek-Woo;Lee, Dong-Ho;Chung, Kook-Sam
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2010.10a
    • /
    • pp.251-256
    • /
    • 2010
  • 주거 건축 및 가구산업의 자재로써 합성목재(Wood-Plastic Composites)는 점차 각광받고 있다. 본 연구에서는 합성목재의 연소특성을 살펴보기 위하여 한계산소지수 측정(ASTM D2863) 및 콘칼로리미터 시험(ISO 5660-1)을 실시하였으며 또한 일반목재인 적송(red pine)과 방부 처리를 한 방부목에 대하여도 동일한 시험을 통하여 합성목재와 연소특성을 비교 검토하였다. 한계산소지수 측정결과 합성목재가 적송 및 방부목에 비해 가장 낮게 측정되었다. 콘칼로리미터 시험결과 합성목재의 열방출률값이 가장 빨리 피크치에 도달하였고 점차적으로 감소하였다. 합성목재의 최대 열방출률 값 및 평균 열방출률 값은 적송 및 방부목에 비해 가장 높게 나타났으며 총 방출열량 또한 가장 높게 나타났다.

  • PDF

A Study on Properties of Waste Wood-Plastic Composite Panels (폐목재-플라스틱을 이용한 복합패널의 특성 연구)

  • Mun, Kyoung-Ju;Choi, Nak-woon;Choi, San-Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.12 no.4
    • /
    • pp.85-94
    • /
    • 2004
  • Waste wood-plastic composite panels are made on different hot press molding conditions, and tested for apparent density, water absorption, expansion in thickness and flexural strength. From the test results, regardless of molding temperature and molding time, the apparent density of the composite panels is increased with an increase in the molding pressure, while their water absorption is decreased with an increase in the molding pressure. The flexural strength of the composite panels is markedly increased with increasing molding pressure, molding temperature and molding time, and tends to become nearly constant at a molding temperature of $120^{\circ}C$ and a molding time of 15min.

  • PDF

A Study of Modular Dome Structural Modeling with Highly Filled Extrusion Wood-Plastic Composite Member (고충진 압출성형 합성목재를 이용한 모듈러 돔의 구조모델링에 관한 연구)

  • Shon, Su-Deok;Kwak, Eui-Shin;Lee, Seung-Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.2
    • /
    • pp.76-83
    • /
    • 2015
  • This paper aims at developing an environmentally friendly modular dome structure system with highly filled extrusion wood-plastic composite (WPC) member, and manufacturing a real-size specimen by modularizing members and nodes. The member used in the model is the WPC member with 70% wooden fiber contests, which is higher then previous WPC one. Its members and nodes are modularized by analyzing geometric characteristics of icosahedral-based geodetic dome. Applicapability of the 6ea prototype nodes and 3ea prototype members to the modular dome is examined with the results of the modulaization and the making process for the real-size specimen. Besides, from the analysis results, the lowest buckling mode is expected to be a nodal buckling on a node near the boundary.

Determination of Wood Flour Content in WPC Through Thermogravimetic Analysis and Accelerator Mass Spectrometry (열중량 분석기와 질량가속기를 이용한 목재·플라스틱 복합재의 목질섬유함량 분석)

  • Gwon, Jae-Gyoung;Lee, Dan-Bee;Cho, Hye-Jung;Chun, Sang-Jin;Choi, Don-Ha;Lee, Sun-Young
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.572-579
    • /
    • 2017
  • Determination of the wood content in wood plastic composite (WPC) is crucial to form reliable WPC market. WPC with simple formulation consisting of only two components (wood flour and polypropylene) was examined using thermogravimetric analysis (TGA) and accelerator mass spectrometry (AMS) for determining wood content in the WPC. TGA method using derivative peak temperature (DTp) of polypropylene under low heating rate ($5^{\circ}C/min$) showed more reliable calibration curve and lower error factor compared to method of using the percentage of weight loss of wood flour. In addition, AMS using bio-based carbon content showed greater reliability for the determination of wood content in the WPC in comparison with the TGA method.

Understanding the Viscoelastic Properties and Surface Characterization of woodflour-Polypropylene Composites (목분-폴리프로필렌 복합재의 점탄성적 성질과 표면특성)

  • Son, Jungil;Gardner, Douglas J.
    • Journal of Adhesion and Interface
    • /
    • v.3 no.4
    • /
    • pp.1-9
    • /
    • 2002
  • The main goal of this study was to analyze the effect of process additives, i.e. maleated polypropylene (MAPP), and nucleating agent on the viscoelastic properties of different types of extruded polypropylene-wood plastic composites manufactured from either PP homopolymer, high crystallinity PP or PP impact copolymer using dynamic mechanical thermal analysis. And also, the esterification reaction between wood flour and maleated polypropylene, and its role in determining the mechanical properties of wood flour-polypropylene composites was investigated. The wood plastic composites were manufactured using 60% pine wood flour and 40% polypropylene on a Davis-Standard $Woodtruder^{TM}$. Dynamic mechanical thermal properties, polymer damping peaks(than ${\delta}$), storage modulus (E') and loss modulus (E") were measured using a dynamic mechanical thermal analyzer. XPS (X-ray Photoelectron Spectroscopy), also known as ESCA (Electron Spectroscopy for Chemical Analysis) study of wood flour treated with MAPP was performed to obtain information on the chemical nature of wood fiber before and after treatment. To analyze the effect of frequency on the dynamic mechanical properties of the various composites, DMA tests were performed over a temperature range of -20 to $100^{\circ}C$, at four different frequencies (1, 5, 10 and 25 Hz), and at a heating rate of $5^{\circ}C/min$. From these results, the activation energy of the various composite was measured using an Arrhenius relationship to investigate the effect of maleated PP and nucleating agent on the measurement of the interphase between the wood and plastic of the extruded polypropylene wood plastic composites.

  • PDF

Application of silk composite to decorative laminate

  • Kimura, Teruo;Aoki, Shinpei
    • Advanced Composite Materials
    • /
    • v.16 no.4
    • /
    • pp.349-360
    • /
    • 2007
  • Recently, natural fiber reinforced composite is attracting attention and considered as an environmentally friendly material. Usually cellulosic fibers are used to reinforce the composites, but some protein fibers such as silk and wool serve the same purpose. In this paper, we proposed a method of producing artistic composite from artistic fabric by using silk fiber reinforced biodegradable plastic, which is designated as 'silk composite', for reinforcement. In order to expand applications of the silk composite, we performed the compression molding of decorative laminates with woody material, which was selected as a core material, and examined the properties of molded decorative laminates with various content of the silk composite. Since plywood and medium-density fiberboard (MDF) are widely used for decorative laminates, we selected them as core materials. As a result, flexible decorative laminates with high flexural strength were obtained by compounding the silk composite with wood materials.

Load Carrying Capacity Evaluation of WPC Soundproof Panel Subjected to Vertical Loads (WPC 방음판의 수직하중에 대한 내하성능 평가)

  • Chang, Taesun;Lee, Il Keun;Kim, Chulhwan;Shim, Jaewon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.823-826
    • /
    • 2014
  • The weight of soundproof panels is an important consideration in the design of both panels and supporting structures. The soundproof panels in noise barriers have to carry their net weight in wet condition respectively the reduced weight and also the weight of the above installed panels in wet condition without showing any failing. In this study, a compression test and a flexural test were performed to determine the maximum vertical load which a wood plastic composites (WPC) panel can bear. In addition, the maximum loading number and height of WPC panels in a noise barrier were calculated for full, simple, and continuous support conditions.

  • PDF

Formaldehyde Release from Medium Density Fiberboard in Simulated Landfills for Recycling

  • Lee, Min;Prewitt, Lynn;Mun, Sung Phil
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.5
    • /
    • pp.597-604
    • /
    • 2014
  • Laboratory-scale landfills (simulated landfills) were designed to determine the formaldehyde released into air and leachate from medium density fiberboard (MDF). Simulated landfills were constructed using cylindrical plastic containers containing alternating layers of soil and MDF for a total of five layers. The highest concentration of formaldehyde was found in the air and leachate from the MDF only treatment compared to treatments containing MDF and soil. At the end of the study (28 days), formaldehyde concentrations in air and leachate from treatments containing MDF and soil decreased by 70 percent and 99 percent, respectively, while the treatment containing MDF only still released formaldehyde into the air and leachate. Therefore, waste MDF after storing 4 weeks in water may be recycled as compost or mulch based on formaldehyde leaching. Also, these data indicate soil restricts formaldehyde release into air and leachate and provides new information about the fate of wood-based composite waste containing UF resin disposed in landfills.

Results of Delamination Tests of FRP- and Steel-Plate-Reinforced Larix Composite Timber

  • LEE, In-Hwan;SONG, Yo-Jin;SONG, Da-Bin;HONG, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.5
    • /
    • pp.655-662
    • /
    • 2019
  • This study evaluated the multi-bonding performances of timbers as well as those of reinforcement and timber to obtain data for preparing guidelines regarding the use of timbers as large structural members. For the multi-bonding performances of timbers, four types of bonding surfaces were prepared according to the pith position. For the bonding performances of FRP (fiber-reinforced plastic)/steel plate and timber, a total of 11 types of specimens were produced for the selection of the appropriate adhesive. The bonding performances of the produced specimens were evaluated through a water soaking delamination test, a water boiling delamination test, and a block shear strength test. The test results showed that the bonding strength of the bonding surface according to the pith position was highest in the specimen for which the two sections with the pith at the center of the cross-section on timber and between the bonding surfaces (the tangential and radial sections were mixed) were bonded. Furthermore, the specimens for which the section (radial section) with the pith on the bonding surface of the timber was bonded showed a high delamination percentage. The results of the block shear strength test showed that the bonding section did not have a significant effect on the shear strength, and that the measured wood failure percentage was higher than the KS standard value. The PVAc adhesive showed the highest bonding strength between larix timber and GFRP (glass FRP). Furthermore, the epoxy and polyurethane adhesives showed good bonding strength for CFRP (carbon FRP) and structure steel, respectively.