• Title/Summary/Keyword: wood industry

Search Result 603, Processing Time 0.026 seconds

Preparation of Eco-friendly and High Strength Paper for Viscose Rayon Yarn (친환경 고강도 인견사용 종이 제조)

  • Hwang, Sung-Jun;Kim, Hyoung-Jin;Bae, Paek-Hyun
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.6
    • /
    • pp.154-163
    • /
    • 2015
  • Because of acute or chronic intoxication by carbon disulfide, viscose rayon industry is strictly subjected to environment regulatory approval. Recently, non-wood fibers are frequently considered as a raw materials for the manufacture of specialty paper for the higher physical strength and functionality. Among the non-wood fibers, hemp bast fiber is one of the most widely used materials in viscose rayon yarn industries. In this study, the handsheet for manufacturing the viscose rayon yarn was prepared with wood pulp fibers and hemp bast fibers. The proper mixing ratio of wood fibers and hemp bast fibers with dry-strength agent and nano-celluloses was analysed in terms of physical and mechanical strength of sheet for viscose rayon yarn. The papermaking conditions for high mechanical strength of sheet were obtained by mixing the SwBKP and HwBKP fibers with freeness level of 200 mL CSF. The dual polymer system by controlling the addition ratio of PVAm and anionic PAM was also important. The addition of nano-cellulose into wet-end furnishes increased the physical strength of sheet, and improved the paper structure for the production of viscose rayon yarn.

Characterization of NAD-Dependent Formate Dehydrogenase from Trametes versicolor Using a Cell-Free Protein Expression System

  • LEE, Su-Yeon;JANG, Seokyoon;LEE, Soo-Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.50 no.3
    • /
    • pp.159-166
    • /
    • 2022
  • CO2 emissions are the primary reason for global warming; hence, biological and chemical technologies for converting CO2 into useful compounds are being actively studied. Biological methods using enzymes can convert CO2 under mild conditions. Formate dehydrogenase (FDH) is a representative CO2 conversion enzyme. Its function was revealed after isolation from bacteria, yeast, and plants. In this study, we evaluated the CO2 conversion potential of FDH isolated from wood-rotting fungi. After isolating the FDH gene (TvFDH) from Trametes versicolor, we cloned the full-length FDH from T. versicolor and expressed it in a cell-free expression system. The gene encoding TvFDH was identified as 1,200 bp open reading frame (ORF) and the expected molecular weight of the protein was approximately 42 kDa. Overexpression of the recombinant crude protein including TvFDH was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Enzyme activities and metabolite analyses confirmed the efficiency of TvFDH for CO2 reduction.

Evaluation of Pitch Pine for Bioethanol Production by Organosolv Pretreatment (Organosolv 전처리를 통한 리기다소나무의 바이오에탄올 생산 적용성 평가)

  • Youe, Won-Jae;Kim, Yong Sik;Kang, Kyu-Young
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.4
    • /
    • pp.21-29
    • /
    • 2015
  • In this study, the feasibility of utilizing wood chips from pitch pine (Pinus rigida) was evaluated for bioethanol production by an organosolv pretreatment and enzymatic saccharification. When wood chips from pitch wood were pretreated with 75% (v/v) ethanol and 1.7% sulfuric acid as a catalyst at H-factor 2000, average pulp yield was 43.3%, which pretreated wood fibers showed higher glucan (55.8%) and lower lignin (12.2%) contents than untreated control (43.9% glucan and 27.8% lignin). After enzymatic saccharification, the organosolv pulps with 56.2% delignification rate reached above 97% conversion rate of cellulose to glucose. These results indicated that increasing the delignification rate causes micro pores on the surface of organosolv pulps resulting in improved the accessibility of enzyme onto the substrate. Moreover, it was in agreement with the SEM examination of wood fibers.

Challenges of Wood Modification Process for Plantation Eucalyptus: A Review of Australian Setting

  • GHANI, Ros Syazmini Mohd;LEE, Man Djun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.2
    • /
    • pp.191-209
    • /
    • 2021
  • Australia has significant wood resources in its native forest, but the resource available for harvest becomes lesser due to the conversion of native forest to conservation reserves. The natural occurrences of bushfires, droughts, and cyclones are highly destructive, making the situation worse. The shortage of wood resources is having a significant negative impact on Australia because wood is so scarce that they cannot meet domestic demands, especially durable wood. Australia cleared approximately 100 million hectares of its land to establish forest plantations, and two million trees were planted. However, most of these plantations are for pulpwood production; however, their application for high-value products is limited due to their undesirable properties. Wood modification is a process of improving unfavorable wood properties to be utilized for a wide range of applications. Australia has not adopted any of these modification processes; it still depends on the less toxic wood preservative to treat wood. This study focuses on the recent advancement in industrial wood modification worldwide and how it may be used to modify Eucalyptus wood for high-value applications. The opportunities and suggestions for Eucalyptus wood modification in Australia will be discussed. Before the study concludes, the future of commercial wood modification for Eucalyptus plantation in Australia will also be presented.

Evaluation of Adhesive Characteristics of Mixed Cross Laminated Timber (CLT) Using Yellow Popular and Softwood Structural Lumbers

  • Keon-Ho KIM;Hyun-Mi LEE;Min LEE
    • Journal of the Korean Wood Science and Technology
    • /
    • v.52 no.1
    • /
    • pp.58-69
    • /
    • 2024
  • To evaluate the adhesive characteristics of mixed cross-laminated timber (CLT) using domestic softwoods structural lumber proposed by KS F 3020 and yellow poplar, penetration depth of adhesive and thickness of bonding line were analyzed based on the results of boiling water soaking delamination. 3 Types of adhesives and 2 types of major layer were divided into a 5 ply CLT using yellow popular as minor layer. The bonding performance of the mixed CLT as structural members was evaluated based on the KS F 2081. The thickness of bonding line between layers of the mixed CLT was measured with a scanning electron microscope, and the adhesive penetration depth in the layer members was measured with an optical microscope. As a result of boiling water soaking delamination test of mixed CLT, the CLT specimens using PRF and PUR adhesives met the requirements of KS F 2081. It was verified that the penetration path of the adhesive in the layes was mainly through the tracheid cell in the case of Japanese larch and Korean red pine layers, and through the vessel and radial tissue in yellow popular layers. The penetration depth of the adhesive was the highest for the PRF adhesive under the same pressing time conditions, and the thickness of the bonding line was in inverse proportion to the penetration depth in the case of the PUR adhesive.

Pulping Features of Blue-stained and Fungicide-treated Woods (청변균 및 살균제처리재의 펄프화특성)

  • Cho, Nam-Seok;Jeong, Seon-Hwa
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.37 no.3
    • /
    • pp.66-73
    • /
    • 2005
  • This study was performed to understand the changes in wood extractives, mainly acetone extracts, in pine woods (Pinus densiflora and Pinus rigida) treated by three blue stain fungi (BSF) such as native BSF in Korea, Leptographium sp., screened Albino strain(BSFcs-1) and commercial Cartapip and fungicide, Wood guard. In addition their pulping and bleaching properties were investigated. BSF treatment has significantly reduced acetone extracts, $25.1{\sim}30.4%$ decreasing in red pine and $22.9{\sim}28.1%$ in pitch pine. Three week aging treatment showed about 20% decreasing in red pine and 19.3% in pitch pine. There were not so significant differences in extracts reduction among native BSF and Albino-type strains (Albino strain, BSFcs-1, and commercial Cartapip). But fungicide, Wood guard, treated wood showed relatively lower decreasing rates of extractives, 14% in red pine and 10.1% in pitch pine. Therefore it is understandable that the fungicide could protect the wood from blue stain fungi attack, but has no effect on its extractive reduction. Concerned to pulping properties of BSF and fungicide treated woods, red pine and pitch pine, optimum pulping condition was 20% active alkali, wood to liquor ratio 1 to 6, $170^{\circ}C$, and 2.5 hr. In the case of BSF woods, optimum pulping condition was same as the sound wood, $43.5{\sim}45%$ of pulp yields and $1.3{\sim}1.45%$ of rejects. Screened pulp yield of fungicide treated wood was lower than those of BSF treated woods. Rejects in pulps were higher in fungicide-treated wood than BSF treated woods. Bleaching pulp yields were ranged of 92 to 93.5%. BSF, Cartapip and fungicide treated woods resulted in lower brightness of $55{\sim}58%$, but Albino-type strain(BSFcs-1) $61.3{\sim}62.3%$, very similar to untreated one. Therefore bleaching chemicals could be saved in the processing of chemical pulping.

A Study of Expression Technique in Furniture Design using CNC Machine (CNC를 활용한 가구디자인 표현 기법 연구)

  • Kim, Gun Soo;Lee, Sang Ill;Lee, Sung Yong
    • Journal of the Korea Furniture Society
    • /
    • v.25 no.1
    • /
    • pp.45-54
    • /
    • 2014
  • Wood cutting utilizing CNC art in the field of furniture design industry, art, education are diverse. However, there is lack of data in the case for wood cutting, such as cutting conditions and wood cutting. So this article is to establish furniture design processing using CNC. The researchers investigated the processed products using CNC, the data of the web site and CNC relevant articles, then organized its impact on the furniture industry today. History and definition of CNC have studied for a discussion of the advantages and disadvantages. Then, the researchers analyzed the cases to investigate the wood cutting conditions, was applied to the fabrication of furniture domestic and foreign. CNC organized systematically design information through the computer So, it allowed to reduce the repetitive behavior that has to work hand in the furniture manufacture existing. CNC has made it possible to design a fine complex in furniture design industry. So it became possible to make a new representation and production of various forms. Material about CNC are mostly for milling machine and shelves for metal processing. So, the researchers investigated and precautions general content of wood cutting. The enhanced understanding to investigate an example that is applied outside the country, is used to analyze the expression various techniques CNC. It is difficult to obtain accurate data processing, it has various characteristics in the same timber, Future research is about analyzing type applications and CNC machining range at the time of processing the various wood.

  • PDF

Development of New Organic Filler for Improving Paperboard Strengths (판지의 강도 향상을 위한 신규 유기충전제 개발)

  • Lee, Ji Young;Kim, Chul Hwan;Park, Jong Hye;Kim, Eun Hea;Yun, Kyeong Tae
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.5
    • /
    • pp.74-79
    • /
    • 2015
  • Wood powder is widely used in paperboard mills to increase bulk and reduce drying-energy consumption, but this material also deteriorates paper strength because it interferes with the bonds between fibers. Although there have been many studies done to improve the strength of paperboard containing wood powder, specific applications have not recently been observed in paperboard mills. In this study, we carried out a new approach for improving paperboard strength by developing a new organic filler with the ability to increase the bonds between fibers. The residue of tapioca starch was used as raw material to manufacture an organic filler. The functionalities, including bulk and strength, were evaluated by making handsheets containing either wood powder or tapioca organic filler, or a mixture of the two, and measuring their physical properties. The organic filler showed lower bulk improvement and higher paperboard strength than the wood powder. The mixture of tapioca organic filler and wood powder showed improved paperboard strength compared to wood powder alone. Therefore, tapioca residue can be used as a raw material to manufacture an organic filler for paperboard mills.

End Distance of Single-shear Screw Connection in Cross Laminated Timber

  • Oh, Jung-Kwon;Kim, Gwang-Chul;Kim, Kwang-Mo;Lee, Jun-Jae;Hong, Jung-Pyo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.746-752
    • /
    • 2017
  • Cross-laminated timber (CLT) is a relatively new engineered wood for timber construction. It is a great shear wall material. It was known that the shear performance of the CLT wall depends on the performance of connections. In connection, nail or screw has to be installed with a certain distance from the end of the timber. Current building code specifies the distance on the name of end distance. The end distance was decided as a minimum distance not to make splitting or tearing out in lumber or glued laminated timber. As a relatively new engineered wood, the end distance of CLT connection need to be identified because CLT is cross-wisely glued lumber products like plywood. Different from glued laminated timber or lumber, cross layer of CLT may prevent wood from splitting or tearing-out. As a result, the end distance of CLT was expected to be reduced than glued laminated timber. The shorter end distance may let more versatile connector design possible. In this study, prior to developing novel connection for CLT, the end distance of CLT connection was experimentally investigated to identify the end distance limitation. The experiments showed that the end distance can be reduced from 7D to 6D, in case of the tested CLT combination and screw in this study.