• Title/Summary/Keyword: wood extractives

Search Result 148, Processing Time 0.027 seconds

Why are Aspen Extractives More Resistant in Kraft Pulping Than Pine Extractives?

  • Shin, Soo-Jeong;Ahn, Sye-Hee
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.5
    • /
    • pp.104-110
    • /
    • 2006
  • We investigated why aspen extractives are more resistant in kraft pulping than pine extractives. Residual extractives content in aspen kraft pulps were 0.5~1.1% compared with 0.1~0.2% in pine pulps. This different response arises from the different composition of extractives in wood chips. Resin acids in pine were almost completely removed in kraft pulping but those are not existence in aspen. Slower saponification of aspen steryl esters resulted from different chemical structure of aspen steryl esters. Main sterols in aspen steryl esters were 24-methyl cyclolanostenol which was highly resistant to alkaline hydrolysis with its characteristic steric hindrance. Sterols in aspen were not well removed in kraft pulping. The relative composition of sterol in aspen kraft pulps was increased with increasing pulping time. The presence of fatty acids in aspen kraft pulps is considered to unusual. Fatty acids in alkaline are supposed to be well ionized and removed well in the washing stage. Nevertheless, there were significant amount of fatty acids remaining in aspen kraft pulps.

Effect of Organic Solvent Extractives on Korean Softwoods Classification Using Near-infrared Spectroscopy

  • Yeon, Seungheon;Park, Se-Yeong;Kim, Jong-Hwa;Kim, Jong-Chan;Yang, Sang-Yun;Yeo, Hwanmyeong;Kwon, Ohkyung;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.4
    • /
    • pp.509-518
    • /
    • 2019
  • This study analyzed the effect of organic solvent extractives on the classification of wood species via near-infrared spectroscopy (NIR). In our previous research, five species of Korean softwood were classified into three groups (i.e., Cryptomeria japonica (cedar)/Chamaecyparis obtuse (cypress), Pinus densiflora (red pine)/Pinus koraiensis (Korean pine), and Larix kaempferi (Larch)) using an NIR-based principal component analysis method. Similar tendencies of extractive distribution were observed among the three groups in that study. Therefore, in this study, we qualitatively analyzed extractives extracted by an organic solvent and analyzed the NIR spectra in terms of the extractives' chemical structure and band assignment to determine their effect in more detail. Cedar/cypress showed a similar NIR spectra patterns by removing the extractives at 1695, 1724, and 2291 nm. D-pinitol, which was detected in cedar, contributed to that wavelength. Red pine/Korean pine showed spectra changes at 1616, 1695, 1681, 1705, 1724, 1731, 1765, 1780, and 2300 nm. Diterpenoids and fatty acid, which have a carboxylic group and an aliphatic double bond, contributed to that wavelength. Larch showed a catechin peak in gas chromatography and mass spectroscopy analysis, but it exhibited very small NIR spectra changes. The aromatic bond in larch seemed to have low sensitivity because of the 1st overtone of the O-H bond of the sawdust cellulose. The three groups sorted via NIR spectroscopy in the previous research showed quite different compositions of extractives, in accordance with the NIR band assignment. Thus, organic solvent extractives are expected to affect the classification of wood species using NIR spectroscopy.

Preparation and Characteristics of Anti-Fungal Paper with Natural Extractives (천연 추출물을 이용한 항균지의 제조 및 특성)

  • Kim, Kang-Jae;Jung, Jin-Dong;Ahn, Eun-Byeoul;Eom, Tae-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.1
    • /
    • pp.45-51
    • /
    • 2015
  • The anti-fungal activity of plant extractives was investigated and the lacquer extractives were selected. The lacquer extractives were coated on anti-fungal paper and confirmed its effect. Water repellency, tensile index and brightness of anti-fungal paper treated with natural extractives were similar to commercial pesticide-treated paper. The incidence of Fusicaladium leuieri MAGNUS of commercial pesticide-treated paper and anti-fungal paper treated with lacquer were similar but, the incidence of Botryosphaeria dothidea (Moug.) Ces & De Not and Gloeodes pomigena of those were increased 10-60 % than commercial pesticide-treated paper.

Studies on the Chemical Composition of Quercus variabilis and Q. serrata Grown in Mt. Jiri (지리산산(智異山産) 굴참나무재(材)와 졸참나무재(材)의 화학적(化學的) 조성(組成))

  • Moon, Chang Kuck
    • Journal of Korean Society of Forest Science
    • /
    • v.58 no.1
    • /
    • pp.23-26
    • /
    • 1982
  • The chemical components in sap and heart wood of Q. variabilis and Q.serrate grown in Mt. Jiri were analyzed Q. variabilis ash contents were 0.57%, in sap wood portion and 1.00% in heart wood. Of the extractives cold water extractives were 5.74% in sap wood and 4.77% in heart wood. Hot water extractives were 6.33% in sap, 6.30% in heart wood portion. 1% caustic soda extractives were 15.52% in sap wood and 15.63% in heart wood. Alcohol-benzol extractives were 4.89% in sap wood and 2.96% in heart wood Holocellulose contents were 73.19% in sap wood, 78.83% in heart wood. Lignin contents were 21.76% in sap wood and 18.14% in heart wood portion. In pentosan contents there were 15.92% in sap wood and 26.50% in heart wood. In Q serrata ash contents were 0.26% in sap wood and 0.27% in heart wood. Cold water extractives were 2.81% in sap wood and 2.04% in heart wood. Hot water extractives were 5.32% in sap wood and 7.08% in heart wood portion. 1%-C austic soda extractives were 15.73% in sap wood and 16.55% in heart wood. Alcohol-benzol extractives were 3.93% in sap wood and 3.51% in heart wood. Holo celluloe contents were 74.21% and 74.84% in sap and heart wood portion respectively. Lignin contents were 14.11% in sap wood and 19.19% in heart wood. Of the pentosan contents there were 20.75% and 21.44% in sap and heart wood respectively. In conclution ash, holocellulose, lignin and pentosan contents showed always consistent differences between sap and heart wood in Q.variabilis, but in Q.serrata only lignin content showed slight difference between sap and heart wood.

  • PDF

Studies on Biological Activity of Wood Extractives (X) - Antifungal Compounds of Hovenia dulcis - (수목추출물의 생리활성에 관한 연구(X) - 헛개나무 목부의 항균활성 물질 -)

  • Choi, Yun-Jeong;Lee, Hak-Ju;Lee, Sung-Suk;Choi, Don-Ha
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.1-9
    • /
    • 2003
  • Antimicrobial activities of plant extractives were investigated to develop a natural fungicide. Two stilbenoids and five flavonoids were isolated from wood extractives of Hovenia dulcis (Rhamnaceae) which had been selected due to its high antifungal activity among the tested species. The chemical structures of isolated compounds were determinded as : 5-hydroxy-7-methoxyflavone, 5,7-dihydroxyflavone (chrysin), 5,7-dihydroxyflavanone (pinocembrin), 3,5,7-trihydroxyflavanone (pinobanksin), 3,4',5,7-tetrahydroxyflavanone (aromadendrin), 3-hydroxy-5-methoxystilbene and 3,5-dihydroxystilbene (pinosylvin) on the basis of Mass and NMR spectroscopic data. According to the results of antifungal test, 3-hydroxy-5-methoxystilbene was evaluated as the strongest antifungal compound among the tested compounds and next were pinocembrin and pinosylvin, but those also had high hyphal growth inhibition activities against C. parasitica, T. versicolor, T. palustris and T. viride. However, pinobanksin, 5-hydroxy-7-methoxyflavone, chrysin and aromadendrin showed very low antifungal activity. In this regard, it could inferred that high antifungal activity of wood extractives of H. dulcis were derived from 3-hydroxy-5-methoxystilbene, pinocembrin and pinosylvin, respectively.

Thin Layer Chromatography on the Influence of Hot Water Extractives of Domestic and Foreign Wood Species on the Cement Setting (국산(國産) 및 외국산(外國産) 수종(樹種)의 열수추출물(熱水抽出物)이 시멘트경화(硬化)에 미치는 영향(影響)에 대한 박층(薄層)크로마토그래피적(的) 분석(分析))

  • Suh, Jin-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.67-72
    • /
    • 1993
  • Hot water extractives of sawdust/particle from domestic and foreign wood species, which were composed of pitch pine, Korean pine, larch, Italy poplar, acacia and oak as Korean wood species, Malaysian oil palm and German spruce were quantitatively analyzed with thin layer chromatography. Sugar components of saccharose, galactose, glucose, fructose and arabinose were contained in these wood species. It was assumed that arabinose and glucose are major inhibitory components against cement hardening in larch and oil palm, respectively, since both species contain a large amount of each sugar. In contrast, fructose might not influence so badly on a cement hardening, when considering that fructose was contained much in Italy poplar with a good cement hardening character. Galactose was a minor component.

  • PDF

Development of New Products and High Value Added Biopolymer from Softwoods by Chemical Modification - Quantitative Variation of Water-soluble Extracts from Coniferous Barks for Tannin-based Adhesives - (화학가공에 의한 침엽수재의 품질귀화 및 고부가 Biopolymer 개발 (I) - 타닌접착제를 위한 침엽수 수피의 수용성 추출물의 양적 변이 -)

  • Cho, Nam-Seok;Han, Gyu-Seong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.1-6
    • /
    • 1996
  • Extracts from bark have been studied with a view to producing water-proof wood adhesives. Lately many softwoods, such as radiata pine from New Zealand and larch from Siberia, Russia, have been imported and utilized, and their residual barks would be expecting as potential raw materials for something useful chemicals. The great effort toward utilization of bark extractives as a chemical feedstock has been made on a worldwide level. However few report has been done for the utilization of tree bark extractives in Korea. Hot-water extracts were prepared from barks of Japanese larch(Larix leptolepis). Siberian larch(Larix gmelinii) and Radiata pine(Pinus radiata). The effect of various factors, such as particle size, liquor ratio, extraction temperature, and reaction time, on the extractive yields was discussed. Particle sizes affected the hot-water extractives: the finer the particle size, the higher extractives and extract efficiency. Higher temperature and higher liquor ratio were more effective. Extractives from Japanese larch were relatively less than those from Siberian larch and Radiata pine barks. Formaldehyde precipitates was the highest in extractives of Radiata pine barks. It could be concluded that Siberian larch bark was the best raw material for tannin adhesives, because its extractive yield was higher than those of the other barks.

  • PDF

Impact of Residual Extractives in Kraft Pulps on Brightness and Color

  • Shin, Soo-Jeong;Sung, Yong-Joo;Park, Jong-Moon;Cho, Nam-Seok
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.41 no.5
    • /
    • pp.20-25
    • /
    • 2009
  • Residual extractives had a noticeable impact on the brightness of unbleached hardwood kraft pulps (trembling aspen). The brightness-impacting extractives were effectively removed by oxygen delignification. In addition, oxygen delignification was more effective in removing chromophores in hardwood unbleached kraft pulps than in those of softwood (loblolly pine). The residual extractives in unbleached hardwood kraft pulps also affected the pulp color, primarily redness and the L value. These redness-related extractives in unbleached hardwood kraft pulps were also effectively removed by oxygen delignification. There were no significant color differences between untreated and solvent-extracted oxygen-delignified aspen kraft pulps. The residual extractives in unbleached and oxygen-delignified softwood (loblolly pine) kraft pulps did not have a significant impact on either brightness or pulp color.

Studies on Biological Activity of Wood Extractives(XII) - Antimicrobial and Antioxidative Activities of Extractives from the Heartwood of Prunus Sargentii (2) - (수목추출물의 생리활성에 관한 연구(XII) - 산벚나무 심재 추출성분의 항균 및 항산화활성(2) -)

  • Lee, Hak-Ju;Lee, Sung-Suk;Choi, Don-Ha
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.16-23
    • /
    • 2003
  • Four flavonoids were isolated from the heartwood of Prunus sargentii. The structures were identified by NMR spectroscopic analysis: prunetin as isoflavone, angophorol, and sakuranetin as flavanone, and isosakuranin as flavanone glycoside. However, these compounds indicated low antifungal and antioxidative activities. In this regard, it could suggest that high antifungal and antioxidative activities of extractives of P. sargentii have no ralationship with these compounds.

Uitlization of Ligno-cellulosic Biomass(I) - Manufacture of Explosion Apparatus and Composition of Explode Wood - (목질계(木質系) Biomass의 이용(利用)(I) - 폭쇄장치(爆碎裝置)의 제작(製作) 및 폭쇄재(爆碎材)의 조성(組成) -)

  • Lee, Jong-Yoon;Park, Sang-Jin;Lee, Seok-Gun;Cho, Nam-Seok;Chang, Jun-Pok;Ann, Byung-Jo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.65-73
    • /
    • 1989
  • Steam explosion process is an efficient pretreatment method for sparating and utilizing wood main components has attracted attention in utilization of ligno-cellulosic biomass. In order to obtain the effective pretreatment condition. this study was made explosion apparatus. examined the composition. extraction of exploded wood. Wood chips of pine(Pinus densiflora oak (Quercus serrata) and birch wood (Belula platyphylla var. japonica) were treated with a high pressure steam(20-30 kg/$cm^2$, 2-6 minutes). The results can be summarized as follow; In analysis of exploded wood(EXW). It was found arabinose residues rapidly decreased with increasing of steaming time and pressure. Extractives of EXW with sodium hydroxide increased with increasing of steaming-time and- pressure especially extractives 1% sodium hydroxide has higher than other extracted method extractives of hard wood(oak, birch) has higher than pine wood. In EXW extracted with sodium hydroxide and methanol lignin was partially delignified alkali extraction was more delignified than methanol extraction hardwood than pine wood.

  • PDF