• Title/Summary/Keyword: wood dust

Search Result 70, Processing Time 0.031 seconds

A Study on the Method of Science Laboratory Waste Water by Absorbent at the Secondary School (학교 실험 폐수 처리 방안)

  • 장원일
    • Hwankyungkyoyuk
    • /
    • v.2 no.1
    • /
    • pp.92-99
    • /
    • 1991
  • According to our secondary school curriculum for natural science and technical circles, there be used 353 of chemical reagents including 24 kinds of harmful and toxicant components. At present, most school are discharging their school laboratory waste water without any chemical and physical treatments. So as to solve the environmental problem for water pollution, this study tried to research a kind of adsorbant utilizing saw dust, wasted wood sources and designed the simple processing system using the adsorbent. This adsorbent was made by extracting lignin substances from raw saw dust under the solution of 0.5N-NaOH at the temperature of $100^{\circ}C$. Their metal removed rates was measured not only by processing of column and vessel. but also by comparing the standard solution and real waste water. The results were proved as more than 90(%) of the adsorptive efficiency on the average from Pb, Cd, Cu except Cr(VI)in case of the school experimental waste water soaked in vessels a long with 4g of the adsorbent for 24 hours. The new processing system enables to remove most harmful and toxicant metals by filtering, sedimenting and adsorbing at the low cost.

  • PDF

Properties of Adsorption Matrix for Improving Indoor Air Quality using Cork (코르크를 활용한 실내공기질 개선용 흡착 경화체의 특성)

  • Kim, Yeon-Ho;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.56-57
    • /
    • 2019
  • Recently, the risk of fine dust is emerging in Korea. According to the OECD report, the incidence of hospitalization and mortality from lung disease is increased, and the incidence of lung cancer and mortality from ischemic heart disease with prolonged exposure are increased. In addition, indoor air quality has become an important factor affecting the human body as indoor life has increased due to the Industrial Revolution. Air pollutants that cause indoor air deterioration typically include particulate dusts as described above, formaldehyde and VOCs released in gaseous form from adhesive wood products used in building materials and furniture. May cause breathing problems. In this study, we analyzed the properties of adsorption matrix for improving indoor air quality using cork.

  • PDF

Source Characterization of Suspended Particulate Matter in Taegu Area, Using Principal Component Analysis Coupled with Multiple Regression (주성분/중회귀분석을 이용한 대구지역 대기중 부유분진의 발생원별 특성평가)

  • 백성옥;황승만
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.8 no.3
    • /
    • pp.179-190
    • /
    • 1992
  • This study was carried out to characterize sources of atmospheric total suspended particulates (TSP) in urban and sub--urban areas of metropolitan taegu. The sources were tentatively identified by a multivariate technique, i.e. principal component analysis (PCA), and the source contributions to the atmospheric concentrations of TSP were further estimated by stepwise multiple regression analysis. A total of 5 sources was identified in the urban area of Taegu (soil dust resuspension, fuel combustion, secondary aerosol, traffic related aerosol, and refuge burning), while 4 sources were found to be significant in the sub--urban area as following: fuel combustion/secondary aerosol, soil dust resuspension, traffic related aerosol, and wood/agricultural burning. The largest contributor to the atmospheric TSP appeared to be the soil dust resuspension in both areas. The source apportionment of the extractable organic matter (EOM) was also carried out for the Taegu data. The EOM was determined with respect to the solvent polarity, i.e. cyclohexane (non-polar), dichloromethane (semi--polar), and acetone (polar). In addition, the source profiles for the TSP in Taegu area were estimated using a PCA-based algorithm, and the validity was evaluated tentatively by comparing the data in the literature.

  • PDF

Modeling reaction injection molding process of phenol-formaldehyde resin filled with wood dust

  • Lee, Jae-Wook;Kwon, Young-Don;Leonov, A.I.
    • Korea-Australia Rheology Journal
    • /
    • v.20 no.2
    • /
    • pp.59-63
    • /
    • 2008
  • A theoretical model was developed to describe the flow behavior of a filled polymer in the packing stage of reaction injection molding and predict the residual stress distribution of thin injection-molded parts. The model predictions were compared with experiments performed for phenol-formaldehyde resin filled with wood dust and cured by urotropine. The packing stage of reaction injection molding process presents a typical example of complex non-isothermal flow combined with chemical reaction. It is shown that the time evolution of pressure distribution along the mold cavity that determines the residual stress in the final product can be described by a single 1D partial differential equation (PDE) if the rheological behavior of reacting liquid is simplistically described by the power-law approach with some approximations made for describing cure reaction and non-isothermality. In the formulation, the dimensionless time variable is defined in such a way that it includes all necessary information on the cure reaction history. Employing the routine separation of variables made possible to obtain the analytical solution for the nonlinear PDE under specific initial condition. It is shown that direct numerical solution of the PDE exactly coincides with the analytical solution. With the use of the power-law approximation that describes highly shear thinning behavior, the theoretical calculations significantly deviate from the experimental data. Bearing in mind that in the packing stage the flow is extremely slow, we employed in our theory the Newtonian law for flow of reacting liquid and described well enough the experimental data on evolution of pressure.

Hazard Evaluation on Fire and Explosion Characteristics of Resorcinol (레조르시놀의 화재·폭발 위험성 평가)

  • Lee, Keun Won;Choi, Yi Rac;Song, Se Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.4
    • /
    • pp.45-50
    • /
    • 2013
  • Resorcinol is widely used as a wood, tire adhesives, and a raw material of synthetic dye. This material with white crystals at room temperature, the particulates in the air can form explosive mixtures. It is known to be an explosion hazard when exposed to heat in a confined space. The study was evaluated fire and explosion characteristics of the resorcinol through thermal analysis, thermal stability, dust explosion characteristics, and the minimum ignition energy. From this study, it can be used to provide a safety information in the using and handling process of the resorcinol.

A Study on Plywood Glue Extender from Bark and Particle Board Sander Dust (수피(樹皮) 및 파티클보드 폐기분말(廢棄粉末)을 이용(利用)한 합판(合板)의 증량(增量)에 관(關)한 연구(硏究))

  • Lee, Phil-Woo;Park, Heon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.12-17
    • /
    • 1983
  • The shear strength of plywoods using Douglus-fir bark powder and particlebard sander dust(PSD), abandoned materials in plywood and particleboard industries, as extender to UF resin, was compared with that of plywoods using wheat flour. Extenders were mixed at the rate of 0%, 5%, 10%, 20%, and 30% of UF resin weight. In obtained results, the dry shear strength of all extended plywoods was highest at extending ratio 5% and the wet shear strength was highest at no extending and 5%. Douglas-fir bark powder-and PSD-extended plywoods had as high dry and wet shear strength as wheat flour-extended plywoods up to extending ratio 10% and 20% respectively. But at 300%, wheat flour-extended plywoods had higher shear strength. Douglas-fir bark powder and PSD size should have been reduced (enough to pass through 325 mesh screen) in order to develop the satisfactory mixing, spreading and plywood bond quality. But in this study the powders to pass through 100 mesh screen were used.

  • PDF

Exposure Assessment to Particulates and Noise among Sculptors at a College of Fine Art (미술대학 조소작업 중 발생하는 분진 및 소음에 대한 노출평가)

  • Cho, Hyun-Woo;Yoon, Chung-Sik;Ham, Seung-Hon;Lee, Lim-Kyu;Park, Ji-Hoon;Park, Dong-Jin;Chung, Jin-Ho;Yeom, Jong-Soo;Seo, Kyu-Jin
    • Journal of Environmental Health Sciences
    • /
    • v.37 no.4
    • /
    • pp.267-278
    • /
    • 2011
  • Objectives: A great number of hazardous agents can be emitted from various types of art-creation in a fine arts college, but little data on exposure assessment has been published. A variety of processes encompassing toxic or non-toxic materials, tools, and components are involved in a sculptor work at a fine art college. The aim of this study was to assess exposure levels to particulates and noise during sculpture classes in a college of fine arts. Methods: Students in sculpture classes participated in this study. Mass, number, and surface area concentrations of particulates, noise level, temperature and relative humidity were monitored by both personal and area sampling during the tasks of metal, wood, and stone sculpting. Results: The number and surface concentration of particulates was the highest in the task of wood sculpting, followed by metal and stone work. The mass concentration of particulates was the highest in stone sculpting (personal GM 3.0 mg/$m^3$, GSD 3.0), followed by wood (personal GM 1.5 mg/$m^3$, GSD 1.8) and metal work (personal GM 0.95 mg/$m^3$, GSD 1.51) in that order. Occupational exposure limits (OEL) for particulates depends on the type of particulate. For wood dust, 86% (six subjects) of the personal samples and all area samples exceeded the Korean OEL for wood dust (1 mg/$m^3$), while 20% (two subjects) among stone sculpting students were exposed above the Korean OEL (10 mg/$m^3$). In contrast, metal sculpting did not exceed the OEL (5 mg/$m^3$). For noise level, metal sculpting students (Leq 95.1 dB(A) in the morning, 85.3 dB(A) in the afternoon) were exposed the most, followed by stone sculpting (88.3 dB(A)), and wood sculpting (84.8 dB(A)) in that order. Compared with the 90 dB(A) of the Korean OEL and 85 dB(A) of the American Conference of Governmental Industrial Hygienists' threshold limit value (ACGIH-TLV) for noise, 100% of the subjects (five subjects) and area samples during metal sculpting in the morning session exceeded both OELs, but only three subjects (60%) exceeded the ACGIH-TLV in the afternoon session. For stone sculpting, 50% (one subject) and 100% (two subjects) exceeded the Korean OEL and ACGIH-TLV, respectively, but the area sample did not exceed either OEL. During wood sculpting, two subjects (40%) exceeded ACGIH TLV. Conclusions: This work evaluated the sculptors' exposure to particulate matter and noise in fine art college, and revealed a poor working environment for the participating students. Effective measures should be supplemented by the administration of colleges.

Occupational Tasks Influencing Lung Function and Respiratory Symptoms Among Charcoal-Production Workers: A Time-Series Study

  • Pramchoo, Walaiporn;Geater, Alan F.;Jamulitrat, Silom;Geater, Sarayut L.;Tangtrakulwanich, Boonsin
    • Safety and Health at Work
    • /
    • v.8 no.3
    • /
    • pp.250-257
    • /
    • 2017
  • Background: Tasks involved in traditional charcoal production expose workers to various levels of charcoal dust and wood smoke. This study aimed to identify specific tasks influencing lung function and respiratory symptoms. Methods: Interviews, direct observation, and task/symptom checklists were used to collect data from 50 charcoal-production workers on 3 nonwork days followed by 11 workdays. The peak expiratory flow rate (PEFR) was measured four times per day. Results: The PEFR was reduced and the prevalence of respiratory symptoms increased over the first 6-7 workdays. The PEFR increased until evening on nonwork days but not on workdays. Loading the kiln and collecting charcoal from within the kiln markedly reduced the PEFR and increased the odds of respiratory symptoms. Conclusion: Tasks involving entry into the kiln were strongly associated with a short-term drop in the PEFR and the occurrence of respiratory symptoms, suggesting a need for the use of protective equipment and/or the operation of an effective kiln ventilation system.

Composting and trickling filter for treatment of olive mill waste

  • Li, Xinhua;Lin, Ching-Chieh;Sweeney, Daniel;Earl, Jessica;Hong, Andy
    • Advances in environmental research
    • /
    • v.2 no.2
    • /
    • pp.131-141
    • /
    • 2013
  • Agricultural practice and improper waste disposal in developing regions have resulted in environmental degradation in land and waters, for which low-cost, proven solutions are needed. We demonstrate in the laboratory the applications of composting and trickling filter techniques to treat olive mill wastes that can be implemented in the West Bank and other regions of the world. To a pomace waste sample from a California mill, we amended with saw dust (wood carbon source) and baking soda ($NaHCO_3$ alkalinity) at weight ratios of waste/wood/$NaHCO_3$ at 70:27:1 and composted it for periods of 11 and 48 days; the compost was used as an additive to potting soil for transplanting. The pomace sample was also blended into slurry and introduced to a water-circulating pond and trickling filter system (P/TF) to examine any inhibitive effect of the pomace on biological removal of the organic waste. The results showed the compost-amended potting soil supported plant growth without noticeable stress over 34 days and the P/TF system removed BOD and COD by >90% from the waste liquid within 2 days, with a first-order rate constant of 1.9 $d^{-1}$ in the pond. An onsite treatment design is proposed that promises implementation for agricultural waste disposal in developing regions.

Performance of cyclone separator for syngas production in downdraft gasifier

  • Kumara, Sunil;Shukla, S.K.
    • Advances in Energy Research
    • /
    • v.4 no.3
    • /
    • pp.223-237
    • /
    • 2016
  • The excess use of conventional sources of energy by the industries and power sector result in acute shortage of energy produced by fossil fuel. To overcome this energy crisis, biomass feedstock is used to produce syngas or producer gas. For cleaning the dust particle present in the producer gas cyclone separators are largely used. In this paper we investigate the performance parameters of cyclone separator mainly efficiency and pressure drop for different feedstock. Cyclone performance has been evaluated based on experimentation and empirical approach using Leith and Licht model. The same has also been calculated by using turbulent RSM in Ansys Fluent for Wood and Coconut shell feedstock. Experimental results show that using feed stock with 10 % Calcium oxide (CaO) by weight, the efficiency of cyclone got reduced from 71.87% to 70.75% for wood feed stock, whereas in case of coconut shell, the cyclone efficiency got reduced from 78% to 73.44%. It is also seen that Leith and Licht model and Reynolds stress model (RMS) predicts very close to the particle collection efficiency evaluated by using experimental data.