• Title/Summary/Keyword: wood composite

Search Result 275, Processing Time 0.031 seconds

The Effects of Hot Water Extraction of Wood Meal and the Addition of CaCl2 on Bending Strength and Swelling Ratio of Wood-Cement Board (목질(木質)의 열수추출(熱水抽出) 및 CaCl2 첨가(添加)가 목질(木質)-세멘트 보드의 휨강도(强度) 및 팽윤율(膨潤率)에 미치는 영향(影響))

  • Ahn, Won-Yung;Shin, Dong-So;Choi, Don-Ha
    • Journal of the Korean Wood Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.49-53
    • /
    • 1985
  • The effects of pre-treatments, the hot water extraction of wood meal and the addition of chemical ($CaCl_2$) to wood-cement water system on the properties of wood-cement composite such as modulus of rupture (MOR), modulus of elasticity (MOE), water sorption ratio and swelling ratio of resulting boards were studied in this experiment. The wood meals through 0.83mm(20 mesh) and retained on 0.42mm(35 mesh) screen were prepared from Pinus densiflora S. at Z. and Larix leptolepsis G. For hot water extraction, 500 grams of wood meal for each species were heated to boiling with 1,500ml of distilled water in 2-liter beaker for 6 hours. Every 2 hours, the wood meals were washed with boiling distil1ed water and reheated to boiling again. After 6 hours boiling, the boiled wood particles were collected by pouring this particles on 200 mesh screen. The collected particles then washed twice with hot distilled water and dried for 24 hours in an oven at $109{\pm}20^{\circ}C$. A mixture of 663.4 grams of cement with 331.7 grams of wood meal based on oven-dry weight were dry-mixed in a plastic vessel. The mixture was kneaded with 497.6ml of distilled water in the ratio of 1.5ml of water to a gram of wood meal. To add calcium chloride to the mixture as an accelerator, $CaCl_2$ 4% solution by weight per volume, was added to pine-or larch-cement board in the ratio of 3% to cement weight. To set wood-cement board, this mixture was clamped at 30cm ${\times}$ 30cm, in thickness of 1.5cm for 3 days at room temperature, declamped and then placed at open condition for 17 days. The target density was 1.0. The four specimens sized to 5cm in width and 28cm in length were used for MOR and MOE test for each treatment. After MOR test, the tested specimens were cut to the size of 5cm ${\times}$ 5cm for water sorption and swelling test. The twenty specimens used to measure the water sorption ratio (soaking 24 hours) and ten of these were used for swelling ratio measurement The results obtained were as follows: 1) Larch was not suitable for wood-cement boards because larch-cement board developed no strength, but pine showed 97.9kg/$cm^2$ by hot water extraction. 2) To increase MOR, hot water extraction was more effective than the addition of $CaCl_2$ in pine and larch because the $CaCl_2$ addition was seemed to speed up the ratio of cement hydration without reacting with the wood substances. 3) The water sorption ratio was lowered by the addition of $CaCl_2$ to wood-cement system because the chemical additive accelerated the rate of cement hydration. 4) In pine-cement board, the swelling ratio from 0.37 to 0.42 percent was observed in length and the swelling ratio from 0.88 to 2.0 percent in thickness. As a rule, the swelling ratio of wood-cement board was very low and the swelling ratio in thickness was higher than in length.

  • PDF

The effect of mechanical properties on the particleboard reinforced with fiberglass layer number (파티클보드에 보강된 유리섬유의 layer 수가 기계적 성질에 미치는 영향)

  • Cha, Jae-Kyung
    • Journal of the Korea Furniture Society
    • /
    • v.21 no.5
    • /
    • pp.347-353
    • /
    • 2010
  • This research examined the technical feasibility of composite that had 2- and 3- layers of fiberglass reinforcement to enhance the load carrying capacity of particleboard. Specimens were prepared from commercial particleboard. Results indicated that bending properties, hardness and impact bending energy increased as the number of layers of fiberglass reinforcement increased. The wood screw withdrawal load only decreased at the 3-layer of fiberglass reinforcement. The technique developed by this study may increase an opportunity to use particleboard for structural purposes.

  • PDF

Load Carrying Capacity Evaluation of WPC Soundproof Panel Subjected to Vertical Loads (WPC 방음판의 수직하중에 대한 내하성능 평가)

  • Chang, Taesun;Lee, Il Keun;Kim, Chulhwan;Shim, Jaewon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.823-826
    • /
    • 2014
  • The weight of soundproof panels is an important consideration in the design of both panels and supporting structures. The soundproof panels in noise barriers have to carry their net weight in wet condition respectively the reduced weight and also the weight of the above installed panels in wet condition without showing any failing. In this study, a compression test and a flexural test were performed to determine the maximum vertical load which a wood plastic composites (WPC) panel can bear. In addition, the maximum loading number and height of WPC panels in a noise barrier were calculated for full, simple, and continuous support conditions.

  • PDF

Partial Composite Action of Gypsum-Sheathed Cold-Formed Steel Wall Stud Panels (석고보드와 결합된 강재 샛기둥 패널의 부분 합성거동)

  • Lee, Young Ki
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.4
    • /
    • pp.373-380
    • /
    • 2001
  • The problem addressed in this study is how to analytically treat the partial composite action for wall panels. An equation, derived for wood-joist floor systems, which determines deflections for beams with partial composite action is introduced. The equation is applied to the calculation of the mid-span deflection for gypsum-sheathed, cold-formed steel was stud panels. The objective of this study is to properly reflect the influence of the following factors in the calculation of mid-span deflection for the panel: connection slip, local buckling, perforations in the stud web, and effects from joints in the sheathing. Predicted deflections based on an upper bound for connection rigidity were closest to experimental deflections.

  • PDF

Use and advantage of Red algae fiber as reinforcement of Biocomposite (홍조류 섬유를 보강재로 사용한 바이오복합재료의 특성)

  • Lee, Min-Woo;Seo, Yung-Bum;Han, Seong-Ok
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2007.11a
    • /
    • pp.93-102
    • /
    • 2007
  • Biocomposite was organized with biodegradable polymer and natural fiber that has potential to be used as replacement for glass fiber reinforced polymer composite with the benefits of low cost, low density, acceptable specific strength, biodegradability, etc. Until now, non-wood fibers have been used as reinforcements of biocomposite which are all plant-based fibers. The present study focused on investigating the fabrication and characterization of biocomposite reinforced with red algae fiber. The bleached red algae fiber(BRAF) showed very similar crystallinity to the cellulose. It has high stability against thermal degradation (maximum thermal decomposition temperature of 359.3$^{\circ}C$) and thermal expansion. Biocomposites reinforced with BRAF have been fabricated by a compression molding method and their mechanical and thermal properties have been studied. The storage modulus and the thermomechanical stability of PBS matrix are markedly improved with reinforcing the BRAF. These results support that the red algae fiber can be used as an excellent reinforcement of biocomposites as "green-composite" or "eco-composite".

  • PDF

A Study on Mechanical Properties of Strand/Particle Composites(I) - Effect of Layer Constructions - (스트랜드/파티클 복합체의 기계적 성질에 관한 연구(I) - 단면구성이 기초물성에 미치는 영향 -)

  • Kim, Yu-Jung;Shibusawa, Tatsuya
    • Journal of the Korean Wood Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.1-8
    • /
    • 2000
  • To develop the technology of producing structural board from low grade materials, an attempt was made to produce strand/particle composites from split wood strand(S) and particle(P) of (Cryptomeria japonica D. Don), which changed the layer construction and the ratio of S/P. The influence of layer construction on board properties was determined, focusing on the number and alignment of the S layers. The effect of weight ratio of S/P (3:7, 1:1, 7:3) on mechanical properties was also discussed on seven layered panel. Mechanical properties were determined from static bending tests to give parallel and perpendicular modulus of rupture (MOR) and modulus of elasticity (MOE), and the internal bond (IB) strength. In general, the surface strand layers contributed to the MOR and MOE. The parallel MOR and MOE values were the largest for the single layered S panel (only Slayers: S1), but the perpendicular MOR and MOE was the smallest. Perpendicular MOR and MOE were the largest for seven layered composite that had two cross oriented strand layers (SPSPSPS: SP7). Specimens retained more than half of their MOE and MOR after two hours in boiling water and one hour soaking. IB was the largest for the panel having only P layers, however, differences in IB strength were not identified among the other multi-layered composite panels thus the effect of layer construction on IB strength was small. Thickness swelling (TS) and surface roughness were smaller for the composite having P layers on the surface than for those having S layers. The addition of strands did not enhance the mechanical properties (MOR, MOE, IB). TS values for the panels, with which the S/P ratio was over than 1:1, was the similar to the value for the single layered S panels.

  • PDF

Performance Evaluation of Bending Strength of Curved Composite Glulams Made of Korean White Pine (잣나무 만곡 복합집성재의 휨강도 성능평가)

  • Song, Yo-Jin;Jung, Hong-Ju;Lee, In-Hwan;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.4
    • /
    • pp.463-469
    • /
    • 2015
  • In this study, to improve bending strength performance of Korean white pine, we made the curved composite glulam that was reinforced with glass fiber materials and larch lamina. Five types of Korean white pine curved glulams were made depending on whether they had been reinforced or not and how they had been reinforced. Type-A, reference specimen, was produced only with Korean white pine lamina, and Type-B was with larch lamina in the same thickness. Type-C was made by inserting a glass fiber cloth of textile shape between the each layer. Type-D was reinforced with two glass fiber cloths, which were placed inside and outside of the outermost lamina. Type-E was reinforced with GFRP sheet in the same way as Type-D. As a result of this bending strength test, the modulus of rupture (MOR) of Type-B, Type-C and Type-E were increased by 29%, 6%, and 48% in comparison with Type-A. However, MOR of Type-D was decreased by 2% in comparison with Type-A. In the failure modes, Type-A, Type-B and Type-C were totally fractured at the maximum load. However, load values of Type-D and Type-E decreased slowly because of reinforcement of fracture suppression, and the GFRP sheet (Type-E) had better reinforcing effect on compressive stress and tensile stress than the glass fiber cloth (Type-D).

Processability of Bio-composites Applied Polyolefin to Recycled Fiberboard Flour (Polyolefin계 고분자에 섬유판 가공 부산물을 적용한 환경 친화형 바이오복합재의 가공성)

  • Choi, Seung-Woo;Kim, Hee-Soo;Lee, Byoung-Ho;Kim, Hyun-Joong;Ahn, Sye-Hee
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.6 s.134
    • /
    • pp.55-62
    • /
    • 2005
  • This study was conducted to evaluate the application of a bio-composite made by the addition recycled fiber board flour as filler. Recycled fiber board (high density fiber board, HDF) flour was added to polyolefin polymer low density polyethylene (LDPE) and polypropylene (PP) for the preparation of bio-composite materials. The mechanical properties and processability of the recycled HDF flour filled LDPE and recycled HDF flour filled PP bio-composites were then measured and compared to those of wood flour (WF) and rice-husk flour (RHF) filled LDPE and PP bio-composites, respectively. The tensile and impact strengths of the recycled HDF flour filled LDPE and PP bio-composites had similar mechanical properties to those of the WF and RHF filled LDPE and PP bio-composites. To measure the processability, torques of the bio-composites were also measured. The torques of the HDF flour filled LDPE and PP bio-composites were lower than those of the WF and RHF filled polyolefin (PP and LDPE) bio-composites with a filler loading of 30 wt.%. This result showed definite processability, which was not related with the distribution of the particle size of the material added. The recycled fiber board flour filled bio-composites showed applicability as substitutes for the bio-composites currently used in the bio-composites industry.

A Study on the Toxicity Analysis of Combustion Gases of Architectural Surface Materials and Architectural Adhesives (건축용 외장재와 접착제 연소가스의 독성분석에 관한 연구)

  • Kim, Won-Jong;Park, Young-Ju;Lee, Hae-Pyeong;Lim, Suk-Hwan;Kim, Jung-In
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.4
    • /
    • pp.48-52
    • /
    • 2013
  • This study was carried out, using toxicity test apparatus, to analyze toxic gases of heat insulation material and adhesives of composite panels used for the architectural surface material when a fire occurs. The findings of this study show that CO, $CO_2$, HCOH, $CH_2CHCN$ and $NO_x$ were detected from styrofoam, reinforced styrofoam, polyurethane foam and glass fiber, but in the case of the polyurethane foam, HCl and HCN were detected as well. All the architectural adhesives released CO, $CO_2$ and $NO_x$, but HCHO was only detected from the adhesives for styrofoam, wood, tile, windows and doors; $CH_2CHCN$ was only from those for wood and stone; $C_6H_5OH$ was only from those for wood. The toxicity index was also measured for architectural surface material and adhesives. Polyurethane foam showed the highest index, 11.7, and glass fiber was followed as 6.8. Reinforced styrofoam showed 5.7 and styrofoam revealed the least 4.9. In the case of architectural adhesives, the highest ranking was those for stone 7.4, windows and doors 6.1, wood 5.3, tile 3.8, and styrofoam 3.7 were followed, respectively.

Structures and Competitiveness of Softwood Products in Korean Import Market (우리나라 수입(輸入) 침엽수재(針葉樹材) 시장구조(市場構造) 및 수종별(樹種別) 경쟁력(競爭力))

  • Kim, Wae-Jung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.34-42
    • /
    • 1991
  • Protection of tropical forest affects on significant reduce of tropical hardwood supply, and softwood resources will be increasingly important for the timber security in Korea. U.S. softwood log was most favorite species for Korean softwood log importers in overall import conditions except price stablization and consistency of export policy. Reduced export volume from Pacific Northwest to Korean market has been immediately replenished by rediata pine from New Zealand and Chilean plantation. Siberian timber will hardly play major roles in Korean timber market unless budding structure. softwood plywood and softwood furniture uses are enhanced. Recent rapid rise of labor cost and reducing tariff rrate in Korea provided better opportunities for import lumber in building materials market. Dry dimension lumber was relatively profitable when processed from import U.S. soft-wood log while green lumber was favorable products processed from radiata pine log in Korean lumber market. This means U.S. softwood lumber would have better opportunity to market for '2${\times}$'4 studs when wood frame housing is introduced. On the other hand while radiata pine is competitive on temporary construction lumber such as supporter and concrete forming frame in Korea. Shortage of raw material for the new capacity of board plants in Korea will be it bottle neck. Major log export countries to Korea as U.S. New Zealand and Chile showed high trade intensity indices of composite hoard produces for Korean market. As Korea efforts to diversify import sources, and tariffs are reduced to 8% as scheduled by 1994. countries of scoring higher comparative advantages as Portugal. Brazil, Austria as well as New Zealand will have better opportunity to penetrate into promised Korean composites hoard market.

  • PDF