• Title/Summary/Keyword: wood composite

Search Result 272, Processing Time 0.021 seconds

Studies on Manufacturing Wood Particle-Polypropylene Fiber Composite Board

  • Lee, Chan-Ho;Eom, Young-Geun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.47-58
    • /
    • 2001
  • For finding both ways of recycling the wood and plastic wastes and solving the problem of free formaldehyde gas emission through manufacturing wood particle-polypropylene fiber composite board without addition of formaldehyde-based thermosetting resin adhesive, control particleboards and nonwoven web composite boards from wood particle and polypropylene fiber formulation of 50 : 50, 60 : 40, and 70 : 30 were manufactured at density levels of 0.5, 0.6, 0.7, and 0.8 g/$cm^3$, and were tested both in the physical and mechanical properties according to ASTM D 1037-93. In the physical properties, control particleboard had significantly higher moisture content than composite board. In composite board, moisture content decreased with the increase of target density only in the board with higher content of polypropylene fiber and also appeared to increase with the increase of wood particle content at a given target density. Control particleboard showed significantly greater water absorption than composite board and its water absorption decreased with the increase of target density. In composite board, water absorption decreased with the increase of target density at a given formulation but increased with the increase of wood particle content at a given target density. After 2 and 24 hours immersion, control particleboard was significantly higher in thickness swelling than composite board and its thickness swelling increased with the increase of target density. In composite board, thickness swelling did not vary significantly with the target density at a given formulation but its thickness swelling increased as wood particle content increased at a given target density. Static bending MOR and MOE under dry and wet conditions increased with the increase of target density at a given formulation of wood particle and polypropylene fiber. Especially, the MOR and MOE under wet condition were considerably larger in composite board than in control particleboard. In general, composite board showed superior bending strength properties to control particleboard, And the composite board made from wood particle and polypropylene fiber formulation of 50 : 50 at target density of 0.8 g/$cm^3$ exhibited the greatest bending strength properties. Though problems in uniform mixing and strong binding of wood particle with polypropylene fiber are unavoidable due to their extremely different shape and polarity, wood particle-polypropylene fiber composite boards with higher performance, as a potential substitute for the commercial particleboards, could be made just by controlling processing variables.

  • PDF

Effect of Compatibilizers on Mechanical Properties of Wood-Plastic Composites Using Styrene Polymers as Matrix Polymers (스티렌계 수지(樹脂)를 매트릭스로 사용한 목재 - 플라스틱 복합체(複合體)의 물성(物性)에 미치는 상용화제(相溶化劑)의 효과(效果))

  • Han, Gyu-Seong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.31-37
    • /
    • 1993
  • Composites of styrene polymers with woody fibers were prepared, and the effect of compatibilizers on their mechanical properties was evaluated. To improve the compatibility of wood fibers and the matrix polymers, styrene-maleic anhydride copolymer(SMA) and maleic anhydride-modified polymers were used as compatibilizers. As results, maleic anhydride-modified polystyrene and SMA were proved to improve the tensile strength of the molded composites, and also were evaluated as good compatibilizers for the wood fiber polystyrene composite. Cellulosic fiber (dissolving pulp) provided better reinforcement than lignocellulosic fiber(thermomechanical pulp). On the contrary in the case of the composite of wood fiber and acrylonitrile-butadiene styrene copolymer(ABS), SMA and maleic anhydride-modified acrylonitrile-butadiene-styrene copolymer(MABS) did not act as compatibilizers. However, MABS was evaluated as a good polymer matrix to make wood fiber reinforced composite. The tensile properties of the composites of wood fiber and MABS were superior than those of wood fiber-ABS composites.

  • PDF

Study on Manufacture of Korean Paper(Hanji) Sludge-Wood Fiber Composite Boards II. Mechanical Properties of Korean Paper(Hanji) Sludge-Wood Fiber Composite Boards (한지슬러지-목재섬유 복합보드의 제조연구 II. 한지슬러지-목재섬유 복합보드의 기계적 성질)

  • Lee, Phil-Woo;Lee, Hak-Lae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.31-37
    • /
    • 1999
  • This study was carried out to develop the Korean paper(Hanji) sludge-wood fiber composite boards utilizing the relinquished sludges occurring from the making process of Korean classic paper Hanji. The bark of paper mulberry(Broussonetia kazinoki Sieb.) has been used as a raw material since past hundreds and thousands years. Korean paper(Hanji) sludge was divided into two kinds, the one was the white sludge from the first stage and the other was the black sludge occurring from the final stage of Korean paper(Hanji) making. Four levels of the mixed ratio of each white or black sludge to wood fiber(10:90, 20:80, 30:70 and 40:60), three levels of the resin adhesives(PMDI, urea and phenol resin) and three levels of the density(0.60, 0.75 and 0.90) were designed to investigate the mechanical properties of Korean paper(Hanji) sludge-wood fiber composite boards. From the results and discussion, it could be concluded as follows : 1. In the white and black sludge-wood fiber composite boards, bending modulus of rupture showed the clear decreasing tendency according to the increase of sludge additive, but it was clearly increased with the increase of specific gravity. Modulus of elasticity showed the same tendency as in the modulus of rupture, and also tensile and internal bonding strength had the same tendencies as in these bending properties. 2. Among the resin adhesives, PMDI or urea resin showed great values in MOR of white sludge-wood fiber composite board, but urea resin was greater than PMDI in MOR and MOE of black sludge-wood fiber composite board. Tensile and internal bonding strength showed the same tendencies as in white sludge-wood fiber composite board. 3. It is suggested that the white sludge-wood fiber composite boards bonded with PMDI or black sludge-wood fiber composite boards bonded with urea resin were able to made similar boards to general fiberboard by the mixed ratio 20:80 of sludge to wood fiber.

  • PDF

Studies on Manufacture of Hanji(Korean Paper) Sludge·Wood Particle Composite - I. Physical Properties of Hanji(Korean Paper)Sludge·Wood Particle Composite (한지(韓紙) 슬러지·목재(木材) 파티클 복합(複合)보드의 제조연구(製造硏究) - I. 한지(韓紙) 슬러지·목재(木材) 파티클 복합(複合)보드의 물리적(物理的) 성질(性質))

  • Lee, Phil-Woo;Lee, Hak-Lae;Son, Jung-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.109-117
    • /
    • 2001
  • This research was carried out to develop the Hanji(Korean paper) sludge wood particle composite utilizing the waste sludges occurring from the making process of Hanji(Korean paper). In the research, four mixing ratios of white or black sludge to wood particle(10:90, 20:80, 30:70, and 40:60), three types of the resin adhesives(PMDI, urea and phenol resin) and three levels of the densities(0.60, 0.75 and 0.90) were designed to investigate the physical properties of Hanji(Korean paper) sludge wood particle composite. The linear expansion of Hanji(Korean paper) sludge wood particle composite was not always increased, compared to control boards. For thickness swelling, PMDI-bonded composites had the lowest value, and thickness swelling of composite was generally decreased with the increase of Hanji sludge. The water absorption of white sludge wood particle composite had no tendency, hut that of black sludge wood particle composite was decreased with an increase of mixing ratio of Hanji sludge.

  • PDF

Preparation of Flame Retardant and Antibacterial Wood with Composite Membrane Coating

  • XU, Jun-xian;LIU, Yang;WEN, Ming-yu;PARK, Hee-Jun;ZHU, Jia-zhi;LIU, Yu-nan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.6
    • /
    • pp.658-666
    • /
    • 2021
  • A novel flame retardant and antibacterial composite membrane coating for wood surfaces was prepared by adding POSS-based phosphorous nitrogen flame retardant (later referred to as NH2-POSS) and silver nanoparticles (Ag NPs) to chitosan (CS). The effects of NH2-POSS content (mass fractions of CS 0%, 0.5%, 1%, 3%, 5%, and 7%) on the structure and properties of the composite membrane coating on wood were investigated. The composite film was prepared by the method of blending and ducting. Contact angle, tensile property and antibacterial effects of the composite film were measured, and infrared spectroscopy was used. The results show that the addition of NH2-POSS can not only improve the toughness of the membrane, but also the flame retardancy of the membrane, which improves the application of the membrane in wood products. However, with the addition of NH2-POSS, the transparency of the composite membrane was weakened. The inhibitory effect of the composite membrane on the growth of Escherichia coli was enhanced with the increase in Ag NPs. This research provides a foundation for the application of functional wood.

Properties of WPC with Chemical Modified Wood Particles (가소화 처리 목편으로부터 재조된 복합재료의 물성)

  • Kim, Chul-Hyun;Kim, Kang-Jae;Eom, Tae-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.40 no.3
    • /
    • pp.53-58
    • /
    • 2008
  • Wood composite, could generally be made from very fine wood powder(<150 mesh) because more large size of wood particle had much less plasticity compared of polymer. To make more high plasticity of relatively large size of wood particle, wood particles were chemically modified with some reagent for acetylation and esterification, etc. WPC(wood plastic composite) was prepared with chemically modified wood particles and the mechanical properties of WPC were evaluated. WPC of esterified wood with maleic anhydride shows the highest level in tensile strength and breaking elongation.

Studies on Thickness Swelling Mechanism of Wood Particle-Polypropylene Fiber Composite by Scanning Electron Microscopy

  • Lee, Chan Ho;Cha, Jae Kyung;Eom, Young Geun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.48-58
    • /
    • 2002
  • This study was carried out through scanning electron microscopy to elucidate the mechanism of thickness swelling in wood particle-polypropylene composite which is a typical way of using wood and plastic materials. For this purpose, control particleboards and nonwoven web composites from wood particle and polypropylene fiber formulations of 100:0, 70:30, 60:40, and 50:50 were manufactured at target density levels of 0.5, 0.6, 0.7, and 0.8 g/cm3. Their water absorption and thickness swelling were tested according to ASTMD 1037-93 (1995). To elucidate thickness swelling mechanism of composite through the observation of morphological change of internal structures, the specimens before and after thickness swelling test by 24-hour immersion in water were used in scanning electron microscopy. From the scanning electron microscopy, thickness swelling of composite was thought to be caused by the complicated factors of degree of built-up internal stresses by mat compression and/or amount of wood particles encapsulated with molten polypropylene fibers during hot pressing. In the composites with wood particle contents of 50 to 60% at target densities of 0.5 to 0.8 g/cm3 and with wood particle content of 70% at target densities of 0.5 to 0.7 g/cm3, thickness swellings seemed to be largely dependent upon the restricted water uptake by encapsulated wood particles with molten polypropylene fibers. Thickness swelling in the composite with wood particle content of 70% at target density of 0.8 g/cm3, however, was thought to be principally dependent upon the increased springback phenomenon by built-up internal stresses of compressed mat.

Research on the Mechanical Properties of Some New Aluminum Alloy Composite Structures in Construction Engineering

  • Mengting Fan;Xuan Wang
    • Korean Journal of Materials Research
    • /
    • v.34 no.2
    • /
    • pp.72-78
    • /
    • 2024
  • The lightweight and high strength characteristics of aluminum alloy materials make them have promising prospects in the field of construction engineering. This paper primarily focuses on aluminum alloy materials. Aluminum alloy was combined with concrete, wood and carbon fiber reinforced plastic (CFRP) cloth to create a composite column. The axial compression test was then conducted to understand the mechanical properties of different composite structures. It was found that the pure aluminum tube exhibited poor performance in the axial compression test, with an ultimate load of only 302.56 kN. However, the performance of the various composite columns showed varying degrees of improvement. With the increase of the load, the displacement and strain of each specimen rapidly increased, and after reaching the ultimate load, both load and strain gradually decreased. In comparison, the aluminum alloy-concrete composite column performed better than the aluminum alloy-wood composite column, while the aluminum alloy-wood-CFRP cloth composite column demonstrated superior performance. These results highlight excellent performance potential for aluminum alloy-wood-CFRP composite columns in practical applications.

Study on Manufacture of Korean Paper(Hanji) Sludge-Wood Fiber Composite Boards I. Physical Properties of Korean Paper(Hanji) Sludge-Wood Fiber Composite Boards (한지슬러지-목재섬유 복합보드의 제조연구 I. 한지슬러지-목재섬유 복합보드의 물리적 성질)

  • Lee, Phil-Woo;Lee, Hak-Lae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.23-30
    • /
    • 1999
  • This study was carried out to develop the Korean paper(Hanji) sludge-wood fiber composite boards utilizing the relinquished sludges occurring from the making process of Korean classic paper Hanji. The bark of paper mulberry(Broussonetia kazinoki Sieb.) has been used as a raw material since past hundreds and thousands years. Korean paper(Hanji) sludge was divided into two kinds, the one was the white sludge from the first stage and the other was the black sludge occurring from the final stage of Korean paper(Hanji) making. Four levels of the mixed ratio of each white or black sludge to wood fiber(10:90, 20:80, 30:70 and 40:60), three levels of the resin adhesives(PMDI, urea and phenol resin) and three levels of the density(0.60, 0.75 and 0.90) were designed to investigate the physical properties of Korean paper(Hanji) sludge-wood fiber composite boards. From the results and discussion, it could be concluded as follows : 1. In the white sludge-wood fiber composite board, the thickness swelling was not affected by the specific gravity and sludge additive of composite boards, but among the resin adhesives PMDI resin showed the best dimensional stability. Water absorption was superior in urea resin, secondly PMDI resin and very poor in phenol resin. 2. In the black sludge-wood fiber composite board, thickness swelling was superior in PMDI resin but very poor in phenol resin. In water absorption, PMDI and urea resin showed good results, regardless of specific gravity or sludge additive, but phenol resin showed poor results. 3. From the results and discussion of physical properties it is suggested that the white sludge-wood fiber composite boards bonded with PMDI or black sludge-wood fiber composite boards bonded with urea resin were made possibly with similar or better properties. compared with general fiberboard until the addition of 20% sludge into wood fiber.

  • PDF

Effect of the Kind and Content of Raw Materials on Mechanical Performances of Hybrid Composite Boards Composed of Green Tea, Charcoals and Wood Fiber (녹차-숯-목재섬유 복합보드의 역학적 성능에 미치는 구성원료의 종류 및 배합비율의 영향)

  • Park, Han-Min;Heo, Hwang-Sun;Sung, Eun-Jong;Nam, Kyeong-Hwan;Lim, Jae-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.1
    • /
    • pp.64-76
    • /
    • 2013
  • In this study, eco-friendly hybrid composite boards were manufactured from green tea, three kinds of charcoals and wood fiber for developing interior materials to reinforce the strength performances and the functionalities in addition to performances of the green tea-wood fiber hybrid boards. The effects for the kind and the component ratio of raw materials on mechanical properties were investigated. Bending strength performances of hybrid composite boards were highest in the hybrid composite boards composed of green tea, fine charcoal and wood fiber on average. However, the difference caused by the kind of charcoals was not large. These values were was markedly improved than those of green tea - wood fiber hybrid composite boards reported in previous researches. And it was found that the bending strength performance decreased with increasing component ratios of green tea and charcoals. The difference between urea resins used as the binder showed the higher value in hybrid composite boards using $E_1$ grade urea resin than in those using $E_0$ grade urea resin, but the difference between hybrid composite boards manufactured by both resins decreased markedly than the green tea - wood fiber hybrid composite boards reported in previous research. The internal bond strength of hybrid composite boards was in the order of hybrid composite boards with fine charcoal, activated charcoal and black charcoal, and it was found that the hybrid composite boards with fine charcoal had a similar values to control boards composed of only wood fiber.