• Title/Summary/Keyword: wood adhesives

Search Result 134, Processing Time 0.023 seconds

Physical and Mechanical Properties of Three-layer Particleboards Bonded With UF and UMF Adhesives

  • Iswanto, Apri Heri;Simarmata, Janrahman;Fatriasari, Widya;Azhar, Irawati;Sucipto, Tito;Hartono, Rudi
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.787-796
    • /
    • 2017
  • A low dimensional stability and poor bending strength properties were main problems in particleboard manufacturing. The objective of this research was to evaluate the effect of mixed wood species and urea-formaldehyde (UF) or urea-melamine-formaldehyde (UMF) resins on the physical and mechanical properties of three-layer particleboards. The ratio of face/core/back layer was 1 : 2 : 1. The resin content of 12% for both UF resins and UMF resins (UF/MF = 70/30% w/w) was used. The results of this study showed that the utilization of S.mahagony shaving using both UF and UMF resins caused a decrease in the thickness swelling and water absorption of the boards. Thickness swellings of particleboard made of Sengon/Sengon/Sengon (SSS), Mahogany/Mahogany/Mahogany (MMM), Sengon/Mahogany/Sengon (SMS), and Mahogany/Sengon/Mahogany (MSM) were in the range of 23%, 12~16%, 14~16%, and 13~21%, respectively. The board bonded with UMF resin demonstrated better dimensional stability than that bonded with UF resin alone. Modulus of elasticity (MOE) and modulus of rupture (MOR) of particleboards made of S. mahagony shaving in the surface layer in both MMM and MSM boards were better than those of the SSS and SMS. MOE of MMM and MSM board was in the ranges of 24,000 to $26,000kg.cm^{-2}$ and 18,000 to $21,000kg.cm^{-2}$ respectively. Meanwhile, the MOR of board was in the ranges of 200 to $240kg.cm^{-2}$ and 190 to $228kg.cm^{-2}$, respectively.

Bond Strength of Plywood Manufactured with Adhesive of pMDI-Ozonized Waste Cooking Oil (오존산화 폐식용유와 pMDI접착제의 합판 접착력)

  • Kang, Chan-Young;Lee, Eung-Su;Seo, Jun-Won;Park, Heon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.6
    • /
    • pp.498-504
    • /
    • 2011
  • The purpose of this study was to investigate and develop an eco-frendly wood adhesive based on vegetable oil (especially soybean oil), the renewable and sustainable natural resources, using ozonification technology for the chemical structure modification. The waste soybean oil (WSBO) was reacted with $O_3$ at the rate of $450m{\ell}$(acetone) : $50m{\ell}$ (WSBO) for different times, 1, 2, 3 hrs. The investigation of the modified chemical strecture of the ozonied WSBOs were conducted using FT-IR. As ozonification time increased, the peak of the unsaturated double bonds was disappeared especially ozonized-3hrs and aldehyde or carboxyl peak appeared because ozonification broke the oil into small molecules. The plywood were made at $150^{\circ}C$ with 4 minutes hot-press time using the different ozonized 3 hrs WSBO/pMDI adhesives and were tested for the dry, wet, cyclic boil test according to the Korea Industrial Standard F3101 Ordinary plywood. The bond strengths gradually increased until 1 : 0.5~1 : 3, but it decreased 1 : 4, as the contents of pMDI increased. The results of the dry, wet and cyclic bond strengths the equivalent ratio was formed approximately between 1 : 2~1 : 3. And the 1 : 1~1 : 4 strengths met constantly the standard requirement of 7.0kgf/$cm^2$ (KS F3101). From the comprehensive view on the results of above experiment, it could be confirmed that ozonized WSBO/pMDI has characteristics of effective reactivity and wet stability showed as an excellent candidate of wood adhesive applications.

Properties of Charcoal Board Manufactured from Domestic Wood Waste

  • Seo, In-Su;Lee, Hwa-Hyoung
    • Journal of the Korea Furniture Society
    • /
    • v.21 no.3
    • /
    • pp.237-247
    • /
    • 2010
  • This research was carried out to examine the properties of black charcoal board, in order to find the proper manufacturing condition for the black charcoal-board made of the charcoal. The charcoal in this study was distillated from domestic wood waste, and it were also the purpose of this study to see if the black charcoal-board has the advantageous properties of charcoal as a well-being building material against the sick house problem. Domestic wood waste was consisted of MDF 40%, PB 30%, plywood 15% and wood 15%, respectively. Black charcoal board was produced by hot pressing with following conditions; temperature $170^{\circ}C$, three stage pressing cycle of $40-10-40\;kgf/cm^2$(1min.-2.5min.-5min.) and non formaldehyde adhesives [P15%+M5%:MDI(M), poly vinyl acetate emulsion(P). Fine mixed particle size [#6-12(16.9%), #12-18(16.7%), #12-40(47.2%), #40-60(9.5%), #60-100(5.9%), less than #100(3.8%)] gave better results than larger particle size [over #6(33.8%), #12-18(17.7%), #12-40(37.7%), #40-60(6.4%), #60-100(2.6%), less than #100(1.8%)]. Final moisture content of the mat was best at 36%. Black charcoal-board showed less MOR and IB(internal bond), more WA(water absorption) than that of white charcoal-board. Black charcoal board showed not only the same gas adsorption and dimensional stability as white charcoal board but also good cutting, nailing and drilling for indoor environment systems.

  • PDF

Effect of Polymerization Conditions on the Characteristics of Polyvinyl Acetate Emulsions

  • Youn, Hye-Jung;Lee, Hak-Lae
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.30 no.4
    • /
    • pp.28-34
    • /
    • 1998
  • Polyvinyl acetate emulsion has been widely used as adhesives for wood and paper, paint additives and binders for fiber, leather, and other materials because it is an excellent adhesive with many advantages including low in toxicity risks and manufacturing cost. It is expected the consumption of polyvinyl acetate emulsion as adhesives will increase in cigarette industry as well as in paperboard coating industry. Recently the operation speed of the cigarette tip wrapper increased so substantially that improvement of the emulsion properties is required including good wet tack development, narrow and controlled particle size distribution, low viscosity, etc. In this study the effects of such polymerization conditions as the type and amount of emulsifier, internal or external plasticizing, and emulsification methods on the viscosity and particle size of polyvinyl acetate emulsions were examined. Results showed that polyvinyl alcohol with a high degree of hydrolysis and low molecular weight and nonionic surfactants are superior to anionic surfactant in improving adhesion and emulsion stability. They also tend to produce emulsions with smaller particle size. External plasticization with dipropylene glycol dibenzoate was more effective in improving flexibility than internal plasticization with butyl acrylate. Monomer emulsification under high shear was more effective in decreasing the particle size.

  • PDF

Interfacial and Mechanical properties of Different Heat Treated Wood and Evaluation of Bonding Property between Stone and Wood for Rock Bed (열처리 조건에 따른 목재의 계면과 기계적 물성 및 돌침대용 석재/목재간 접착제에 따른 접착력 평가)

  • Kwon, Dong-Jun;Shin, Pyeong-Su;Choi, Jin-Yeong;Moon, Sun-Ok;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.16 no.2
    • /
    • pp.69-75
    • /
    • 2015
  • Stone board for the rock bed was needed to reduce weight using thin thickness and reinforced materials. In this work, stone/wood board for rock bed was studied. Stone and wood were attached to reduce total weight of stone for rock bed. For reinforcing wood heat treatment method was used to change surface and mechanical properties. Mechanical strength of heat treated wood increased more than neat condition. The optimum heat treatment condition was set on $100^{\circ}C$ under tensile, flexural loads whereas surface energy was also obtained by contact angle measurement. Optimum adhesive condition was to get the maximum adhesion between stone and wood. Lap shear test was performed for stone/wood board with different adhesives such as amine type epoxy, polyurethane, chloro-rubber and vinyl chloride acetate type. Fracture surface of lap shear test was shown at wood fracture part on stone using amine type epoxy adhesive. It was found that for high adhesion between stone and wood the optimum adhesive was epoxy type for the rock bed.

The Bending Strength Properties and Acoustic Emissions to Sloped Finger-Jointed Pinus densiflora S. et Z. (소나무 경사핑거접합재의 휨강도성능과 AE 특성)

  • Byeon, Hee-Seop;Ahn, Sam-Keun;Kim, Jong-Man
    • Journal of the Korean Wood Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.30-36
    • /
    • 1999
  • This paper describes the relationship between the bending strength properties of sloped finger-jointed woods and the acoustic emissions (AEs) generated during the test. Pinus densiflora pieces were cut in sloped-finger types and glued with four kinds of adhesives (polyvinyl acetate, polyvinyl-aeryl, oilic urethane and resorcinol-phenol resin). The results were as follows: The lower the bending strength(load) was, the earlier the generation time of AE event count got and the higher the increasing rate of AE event count became in the sloped finger-jointed specimens bonded with polyvinyl acetate and oilic urethane resin adhesives. Therefore, the slope from load-AE cumulative event count curve was very steep. The AE event count for resorcinol-phenol resin adhesive obtained even from low load level was abundant. The AE event count continuously increased as load increased and the event count was much more than one in the other conditions. The slope from load-AE cumulative event count curve was very gentle compared with other conditions. The patterns of AE event count and count were very similar. The relationship between the MOR and the AE parameter from load and AE cumulative event count in the early stage of the sloped finger-jointed specimens bonded with polyvinyl acetate, oilic urethane and resorcinol-phenol resin adhesives was much greater than that between the MOE and the MOR. Therefore, the AE signals obtained during bending test are useful for estimating the strength of sloped finger-jointed specimens.

  • PDF

Environment-Friendly Bonding of Decorative Veneer by SIS-Based Hotmelt Pressure-Sensitive Adhesives (환경친화성 SIS계 핫멜트 점착제를 이용한 무늬목 접착)

  • Lim, Dong-Hyuk;Kim, Sumin;Park, Young-Jun;Kim, Hyun-Joong;Yang, Han-Seung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.22-29
    • /
    • 2006
  • The overlaid panels are important materials in interior and construction with added surface layers (PVC films, decorative paper, decorative veneer). Generally, the adhesive for decorative veneer to wood-based panel is urea-formaldehyde (UF) adhesive which cause the emission of formaldehyde during not only the manufacturing process, but also service life. In this study, environment-friendly SIS-based hotmelt pressure-sensitive adhesive (PSA) was evaluated as a adhesive for bonding a decorative veneer. The various SIS-based hotmelt PSA was blended as a function of diblock content, softening point of tackifier, tackifier content, and applied to bonding the decorative veneer.

Linear Expansion and Durability of a Composite Boards (MDF Laminated Using Three Selected Wood Veneers) against Drywood Termites

  • CAHYONO, Tekat Dwi;YANTI, Hikma;ANISAH, Laela Nur;MASSIJAYA, Muh Yusram;ISWANTO, Apri Heri
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.6
    • /
    • pp.907-916
    • /
    • 2020
  • This research was conducted to investigate the linear expansion and resistance properties of a composite board (com-ply). This board was made of medium-density fiberboard (MDF) laminated using avocado (Persea americana), mahogany (Swietenia mahogani), and pine (Pinus merkusii) veneers. These three types of veneers were laminated on both surfaces of the MDF using adhesives, namely, epoxy and isocyanate. Glue (250 g·m-2) was spread on the surface, followed by cold press for 3 h with an applied pressure of 15 kg·cm-2. The research result revealed that com-ply exhibited an increased dimensional stability compared with MDF, indicated by reduction in water absorption, thickness swelling, and linear expansion. The com-ply made of the pine veneer and isocyanate adhesive exhibited high density, water absorption, thickness swelling, and screw withdrawal load. The com-ply that exhibited the strongest resistance to drywood termite attacks was the one made of the mahogany veneer and isocyanate adhesive. Moreover, the com-ply that exhibited the biggest weight loss (3.6 %) was made of the pine veneer and epoxy adhesive. The results of this research may facilitate in manufacturing com-ply using the selected veneer and adhesive without the application of hot press.

Results of Delamination Tests of FRP- and Steel-Plate-Reinforced Larix Composite Timber

  • LEE, In-Hwan;SONG, Yo-Jin;SONG, Da-Bin;HONG, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.5
    • /
    • pp.655-662
    • /
    • 2019
  • This study evaluated the multi-bonding performances of timbers as well as those of reinforcement and timber to obtain data for preparing guidelines regarding the use of timbers as large structural members. For the multi-bonding performances of timbers, four types of bonding surfaces were prepared according to the pith position. For the bonding performances of FRP (fiber-reinforced plastic)/steel plate and timber, a total of 11 types of specimens were produced for the selection of the appropriate adhesive. The bonding performances of the produced specimens were evaluated through a water soaking delamination test, a water boiling delamination test, and a block shear strength test. The test results showed that the bonding strength of the bonding surface according to the pith position was highest in the specimen for which the two sections with the pith at the center of the cross-section on timber and between the bonding surfaces (the tangential and radial sections were mixed) were bonded. Furthermore, the specimens for which the section (radial section) with the pith on the bonding surface of the timber was bonded showed a high delamination percentage. The results of the block shear strength test showed that the bonding section did not have a significant effect on the shear strength, and that the measured wood failure percentage was higher than the KS standard value. The PVAc adhesive showed the highest bonding strength between larix timber and GFRP (glass FRP). Furthermore, the epoxy and polyurethane adhesives showed good bonding strength for CFRP (carbon FRP) and structure steel, respectively.

Bonding Quality of Adhesives Formulated with Okara Hydrolyzates and Phenol-formaldehyde Resins for Bonding Fancy Veneer onto High-density Fiberboard (두부비지 가수분해물과 페놀수지로 조제한 마루판 화장용 접착제의 접착성능)

  • Yang, In;Ahn, Sye-Hee;Choi, In-Gyu;Choi, Won-Sil;Kim, Sam-Sung;Oh, Sei-Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.388-396
    • /
    • 2009
  • In our study, the potential of okara as an ingredient of new bio-based adhesives was investigated for the production of fancy-veneered flooring boards. Okara was hydrolyzed by 1% sulfuric acid solution (AC) and 1% sodium hydroxide solution (AK). Phenol formaldehyde (PF) prepolymers were prepared as a cross-linker of okara hydrolyzates. Then, okara-based adhesive resins were formulated with 35% AC, 35% AK and 30% PF prepolymer on solid content basis. The adhesive resins were applied on high-density fiberboards (HDF) with the spread rate of $300g/m^2$. After that, oak fancy veneers are covered on the HDF, and then pressed with the pressure of $7kg/m^2$ at $120^{\circ}C$. The experimental variables were three mole ratios of formaldehyde to phenol (1.8, 2.1, 2.4), three assembly time (0, 10, 20 min), and two press time (90 sec, 120 sec), respectively. The fancy-veneered high-density fiberboards were tested by dry tensile strength, glueline failure by wetting and formaldehyde emission. Tensile strength of the boards exceeded the requirement of KS standard. The formaldehyde emissions were approached at the E0 level specified in KS standard. Based on these results, okara can be used as an ingredient of environmentally friendly adhesive resin systems for the production of flooring boards.