• Title/Summary/Keyword: wireless-sensor

Search Result 4,231, Processing Time 0.027 seconds

Design of Wireless Smart Plug for Energy Sensor Network (에너지 센서 네트워크를 위한 무선 스마트 플러그 설계)

  • Kim, Won-Ho
    • Journal of Satellite, Information and Communications
    • /
    • v.6 no.2
    • /
    • pp.131-135
    • /
    • 2011
  • In this paper, we describe the design and implementation of wireless smart plug having AC power sensor and intelligent standby power control algorithm for energy sensor network. The adaptive standby power control algorithm has function to apply different threshold of standby power by using learning algorithm depending on electric equipments. As using the proposed algorithm, user convenience will be more better and power consumption can be more reduced. The implemented prototypes of wireless smart plug and wireless access point were tested to verify the required functions and performance. As a result, we confirmed practicality of wireless smart power sensor and satisfaction of given design specifications.

Wireless sensor networks for underground railway applications: case studies in Prague and London

  • Bennett, Peter J.;Soga, Kenichi;Wassell, Ian;Fidler, Paul;Abe, Keita;Kobayashi, Yusuke;Vanicek, Martin
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.619-639
    • /
    • 2010
  • There is increasing interest in using structural monitoring as a cost effective way of managing risks once an area of concern has been identified. However, it is challenging to deploy an effective, reliable, large-scale, long-term and real-time monitoring system in an underground railway environment (subway / metro). The use of wireless sensor technology allows for rapid deployment of a monitoring scheme and thus has significant potential benefits as the time available for access is often severely limited. This paper identifies the critical factors that should be considered in the design of a wireless sensor network, including the availability of electrical power and communications networks. Various issues facing underground deployment of wireless sensor networks will also be discussed, in particular for two field case studies involving networks deployed for structural monitoring in the Prague Metro and the London Underground. The paper describes the network design, the radio propagation, the network topology as well as the practical issues involved in deploying a wireless sensor network in these two tunnels.

Ranking Artificial Bee Colony for Design of Wireless Sensor Network (랭킹인공벌군집을 적용한 무선센서네트워크 설계)

  • Kim, Sung-Soo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.1
    • /
    • pp.87-94
    • /
    • 2019
  • A wireless sensor network is emerging technology and intelligent wireless communication paradigm that is dynamically aware of its surrounding environment. It is also able to respond to it in order to achieve reliable and efficient communication. The dynamical cognition capability and environmental adaptability rely on organizing dynamical networks effectively. However, optimally clustering the cognitive wireless sensor networks is an NP-complete problem. The objective of this paper is to develop an optimal sensor network design for maximizing the performance. This proposed Ranking Artificial Bee Colony (RABC) is developed based on Artificial Bee Colony (ABC) with ranking strategy. The ranking strategy can make the much better solutions by combining the best solutions so far and add these solutions in the solution population when applying ABC. RABC is designed to adapt to topological changes to any network graph in a time. We can minimize the total energy dissipation of sensors to prolong the lifetime of a network to balance the energy consumption of all nodes with robust optimal solution. Simulation results show that the performance of our proposed RABC is better than those of previous methods (LEACH, LEACH-C, and etc.) in wireless sensor networks. Our proposed method is the best for the 100 node-network example when the Sink node is centrally located.

Development of Wireless Measurement System of Somatic Informations for Stockbreeding Automatization(I) -Development of Single-Channel Wireless Instrument for Measuring Temperature- (축산자동화를 위한 가축의 생체정보 무선 계측장치의 개발(I) -단일채널 체온 무선 계측장치의 개발-)

  • Lee, S.K.;Min, Y.B.;Kim, T.K.
    • Journal of Biosystems Engineering
    • /
    • v.16 no.4
    • /
    • pp.363-371
    • /
    • 1991
  • It is important to measure the somatic informations for stockbreeding automatization. This study was carried out for the development of wireless measurement system of temperature in living animals. New method to measure somatic temperature was developed using the single-channel wireless instrument. This system was constructed by oscillator, temperature sensor, wireless transmitter and receiver circuit, single processing circuit, and microcomputer. Two types of sensor were used and compared to measure the temperature. The thermistor sensor was more sensitive and accurate than platinum resistance sensor, however both sensors were performed efficiently. The single-channel wireless measurement systems developed could measure the somatic temperature successfully and offered a versatile system.

  • PDF

An experimental study for decentralized damage detection of beam structures using wireless sensor networks

  • Jayawardhana, Madhuka;Zhu, Xinqun;Liyanapathirana, Ranjith;Gunawardana, Upul
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.3
    • /
    • pp.237-252
    • /
    • 2015
  • This paper addresses the issue of reliability and performance in wireless sensor networks (WSN) based structural health monitoring (SHM), particularly with decentralized damage identification techniques. Two decentralized damage identification algorithms, namely, the autoregressive (AR) model based damage index and the Wiener filter method are developed for structural damage detection. The ambient and impact testing have been carried out on the steel beam structure in the laboratory. Seven wireless sensors are installed evenly along the steel beam and seven wired sensor are also installed on the beam to monitor the dynamic responses as comparison. The results showed that wireless measurements performed very much similar to wired measurements in detecting and localizing damages in the steel beam. Therefore, apart from the usual advantages of cost effectiveness, manageability, modularity etc., wireless sensors can be considered a possible substitute for wired sensors in SHM systems.

A Secure Multipath Transmission Scheme Based on One-Way Hash Functions in Wireless Sensor Networks (무선 센서 네트워크 환경에서 단-방향 해쉬 함수 기반 다중 경로 보안 전송 기법)

  • Lee, Yun-Jeong;Kim, Dong-Joo;Park, Jun-Ho;Seong, Dong-Ook;Yoo, Jae-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.1
    • /
    • pp.48-58
    • /
    • 2012
  • With the development of sensing devices and wireless communication technologies, wireless sensor networks are composed of a large number of sensor nodes that are equipped with limited computing performance and restricted communication capabilities. Besides, the sensor nodes are deployed in hostile or unattended environments. Therefore, the wireless sensor networks are vulnerable to security. In particular, the fatal damage may be occurred when data are exposed in real world applications. Therefore, it is important for design requirements to be made so that wireless sensor networks provide the strong security. However, because the conventional security schemes in wired networks did not consider the limited performance of the sensor node, they are so hard to be applied to wireless sensor networks. In this paper, we propose a secure multipath transmission scheme based on one-way hash functions in wireless sensor networks considering the limited performance of the wireless sensor nodes. The proposed scheme converts a sensor reading based on one of one-way hash functions MD5 in order to make it harder to be cracked and snooped. And then, our scheme splits the converted data and transfers the split data to the base station using multi-path routing. The experimental results show that our proposed scheme consumes the energy of just about 6% over the existing security scheme.

Development of Wireless Sensor Node and Field Application of Long-span Bridge using Ubiquitous Technology (유비쿼터스 기술을 이용한 무선센서노드 개발 및 장대교량 현장적용 검증 실험)

  • Jo, Byung-Wan;Park, Jung-Hoon;Shin, Byung-Chul;Kim, Heoun;Yoon, Kwang-Won;Yang, Yo-Sub
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.127-132
    • /
    • 2008
  • As economic rapid growth, large structures are damaged by defects from design and construction process of the formation and environments. Therefore, safety diagnosis and monitoring skills are bringing importance into relief and legislate for safety diagnosis of large structures. However, the existing monitoring systems are difficult by using wire cable because of cost, error of date, location, revise. In this paper, wireless sensor network which are accelerator, temperature sensor system using ubiquitous had been field test on Sea-Hea Grand bridge. We compare accelerator, temperature sensor system with wire and wireless sensor network.

  • PDF

An Energy Efficient Chain-based Routing Protocol for Wireless Sensor Networks

  • Sheikhpour, Razieh;Jabbehdari, Sam
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.6
    • /
    • pp.1357-1378
    • /
    • 2013
  • Energy constraint of wireless sensor networks makes energy saving and prolonging the network lifetime become the most important goals of routing protocols. In this paper, we propose an Energy Efficient Chain-based Routing Protocol (EECRP) for wireless sensor networks to minimize energy consumption and transmission delay. EECRP organizes sensor nodes into a set of horizontal chains and a vertical chain. Chain heads are elected based on the residual energy of nodes and distance from the header of upper level. In each horizontal chain, sensor nodes transmit their data to their own chain head based on chain routing mechanism. EECRP also adopts a chain-based data transmission mechanism for sending data packets from the chain heads to the base station. The simulation results show that EECRP outperforms LEACH, PEGASIS and ECCP in terms of network lifetime, energy consumption, number of data messages received at the base station, transmission delay and especially energy${\times}$delay metric.

Cluster Head Chain Routing Protocol suitable for Wireless Sensor Networks in Nuclear Power Plants (원전 무선 센서 네트워크에 적합한 클러스터 헤드 체인 라우팅 프로토콜)

  • Jung, Sungmin
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.2
    • /
    • pp.61-68
    • /
    • 2020
  • Nuclear power plants have a lower cost of power generation, and they are more eco-friendly than other power generation plants. Also, we need to prepare nuclear plant accidents because of their severe damage. In the event of a safety accident, such as a radiation leak, by applying a wireless sensor network to a nuclear power plant, many sensor nodes can be used to monitor radiation and transmit information to an external base station to appropriately respond to the accident. However, applying a wireless sensor network to nuclear power plants requires routing protocols that consider the sensor network size and bypass obstacles such as plant buildings. In general, the hierarchical-based routing protocols are efficient in energy consumption. In this study, we look into the problems that may occur if hierarchical-based routing protocols are applied to nuclear power plants and propose improved routing protocols to solve these problems. Simulation results show that the proposed routing protocol is more effective in energy consumption than the existing LEACH protocol.

Wireless Sensor Networks based Forest Fire Surveillance System

  • Son, Byung-Rak;Kim, Jung-Gyu
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.123-126
    • /
    • 2005
  • Wireless Sensor Networks will revolutionize applications such as environmental monitoring, home automation, and logistics. We developed forest fire surveillance system. In this paper, Considering the fact that in Korea, during November to May, forest fires occur very frequently causing catastrophic damages on the valuable environment, Although exists other forest fire surveillance system such as surveillance camera tower, infrared ray sensor system and satellite system. Preexistence surveillance system can't real-time surveillance, monitoring, database and automatic alarm. But, forest fire surveillance system(FFSS) support above. In this paper, we describes a system development approach for a wireless sensor network based FFSS that is to be used to measure temperature and humidity as well as being fitted with a smoke detector. Such a device can be used as an early warning fire detection system and real-time surveillance in the area of a bush fire or endangered public infrastructure. Once the system has being development, a mesh network topology will be implemented with the chosen sensor node with the aim of developing a sophisticated mesh network.

  • PDF